Terminology:

problem - question we seek an answer for, e.g., "what is the largest item in a list/array?"

parameters - variables with unspecified values

problem instance - assignment of values to parameters, i.e., the specific input to the problem

```
myList: 0 1 2 3 4 5 6
        5 10 2 15 20 1 11
```

(number of elements)

largest: ?

algorithm - step-by-step procedure for producing a solution

basic operation - fundamental operation in the algorithm (i.e., operation done the most) Generally, we want to derive a function for the number of times that the basic operation is performed related to the **problem size**.

problem size - input size. For algorithms involving lists/arrays, the problem size is the number of elements.

```
def sumList(myList):
    """Returns the sum of all items in myList""
    total = 0
    for item in myList:
        total = total + item
    return total
```

What would determine how fast this algorithm would run?
Big-oh Definition - asymptotic upper bound
For a given complexity function \(f(n) \), \(O(f(n)) \) is the set of complexity functions \(g(n) \) for which there exists some positive real constant \(c \) and some nonnegative integer \(N \) such that for all \(n \geq N \),
\[
g(n) \leq c \times f(n).
\]

T(n) = \(c_1 + c_2 \ n = 100 + 10 \ n \) is \(O(n) \).

"Proof": Pick \(c = 110 \) and \(N = 1 \), then \(100 + 10 \ n \leq 110 \ n \) for all \(n \geq 1 \).

100 + 10 \ n \leq 110 \ n
100 \leq 100 \ n
1 \leq n

Problem with big-oh:
If T(n) is \(O(n) \), then it is also \(O(n^2) \), \(O(n^3) \), \(O(n^3) \), \(O(2^n) \), ... since these are also upper bounds.

Omega Definition - asymptotic lower bound
For a given complexity function \(f(n) \), \(\Omega(f(n)) \) is the set of complexity functions \(g(n) \) for which there exists some positive real constant \(c \) and some nonnegative integer \(N \) such that for all \(n \geq N \),
\[
g(n) \geq c \times f(n).
\]
T(n) = c_1 + c_2 n = 100 + 10 n is $\Omega(n)$.

"Proof": We need to find a c and N so that the definition is satisfied, i.e.,
100 + 10 n \geq c n for all $n \geq N$.

What c and N will work?

Theta Definition - asymptotic upper and lower bound, i.e., a "tight" bound or "best" big-oh
For a given complexity function $f(n)$, $\Theta(f(n))$ is the set of complexity functions $g(n)$ for which there exists some positive real constants c and d and some nonnegative integer N such that for all $n \geq N$,
$$c \times f(n) \leq g(n) \leq d \times f(n).$$

![Diagram of execution time versus problem size](image)

T(n) = c_1 + c_2 n = 100 + 10 n is $\Theta(n)$.

1) Suppose that you have an $\Theta(n^2)$ algorithm that required 10 seconds to run on a problem size of 1000. How long would you expect the algorithm to run on a problem size of 10,000?
2) Analyze the below algorithm to determine its theta notation, $\Theta()$.

Selection sort that sorts a list into ascending order
def selectionSort(myList):
 for lastUnsortedIndex in range(len(myList)-1, 0, -1):
 maxIndex = 0
 for testIndex in range(1, lastUnsortedIndex+1):
 if myList[testIndex] > myList[maxIndex]:
 maxIndex = testIndex
 temp = myList[maxIndex]
 myList[maxIndex] = myList[lastUnsortedIndex]
 myList[lastUnsortedIndex] = temp

3) Analyze the below algorithm to determine its theta notation, $\Theta()$.

i = n
while i > 0 do
 for j = xrange(n) do
 k = 1
 while k < i do
 # something of $O(1)$
 k = k * 2
 # end while
 # end for
 i = i / 2
end while
def sequentialSearch(target, aList):
 """Returns the index position of target in aList or -1 if target is not in aList""
 for position in xrange(len(aList)):
 if target == aList[position]:
 return position
 return -1

4) For sequential search, what is the best-case time complexity $B(n)$?

5) For sequential search, what is the worst-case time complexity $W(n)$?

6) If the probability of a successful sequential search is p, then what is the probability on an unsuccessful search?

7) If the probability of a successful sequential search is p, then what is the probability of finding the target value at a specific index in the array?

Write a summation for the average number of comparisons.

8) What is the average time complexity, $A(n)$?
9) For binary search, what is the best-case time complexity $B(n)$?

10) What is the basic operation for binary search?

11) “Trace” binary search to determine the total number of worst-case basic operations?

<table>
<thead>
<tr>
<th>level</th>
<th># of basic operations</th>
<th># of elements</th>
<th>worst-case operations</th>
<th>target</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>n</td>
<td>0 1 2 . . . mid n-1</td>
<td>151</td>
</tr>
</tbody>
</table>

10 200