1) In Chapters 7 and 8 we switch from algorithm development (e.g., merge sort algorithm) and its analysis (e.g., $\Theta(n \log_2 n)$) to analyzing the computation complexity of a problem (e.g., the sorting problem).

Chapter 7: Computational Complexity for Sorting Problem
Goal: We want to determine a lower bound on the best possible sorting algorithm (for the worst-case problem instance -- data arrangement) that compares items.

Result: best possible sorting algorithm that compares items must do at least $\Theta(n \log_2 n)$ comparisons.

Important so:
- you do not waste your time looking for an $\Theta(n)$ sorting algorithm that compare items, and
- you think about sorts faster than $\Theta(n \log_2 n)$ that do not compare items.

To understand the computational-complexity argument for the sorting problem which compares items, consider 3 distinct items in variables: a, b, c.

a) Complete the decision tree to represent the necessary comparisons to determine the correct sorted order:

```
  a < b?
    /
   /   \
 a < c? No
    /
   /   \
 a, b, c
```

b) What do the leave nodes in the above decision tree for a sorting algorithm represent?

c) If we have n items to sort, how many leave nodes would be needed in the decision tree for any sorting algorithm?

d) What part of the decision tree represents the worst-case behavior for sorting?

e) To prove the result ("best possible sorting algorithm that compares items must do at least $\Theta(n \log_2 n)$ comparisons"), using the decision tree what are we going to have to show (proof)?
2. If \(m \) is the number of leaves in a binary tree (e.g., the decision tree), what must be the minimum depth (height) \(d \) of the binary tree? (Hint: consider the shape of the binary tree to minimize the height of the tree)

3. How might we make use of Stirlings approximation (stated below)?

\[
\log_2 n! = n \log_2 n - \frac{n}{\ln 2} + \left(1/2\right) \log_2 n + O(1)
\]

4. How might we get around this bound to do better than a \(\Theta(n \log_2 n) \) sorting algorithm?