Chapter 8: Computational Complexity for Searching Problem

Goal: We want to determine a lower bound on the best possible searching algorithm (for the worst-case problem instance -- data arrangement) that compares items.

Result: best possible searching algorithm that compares items must do at least $\Theta(\log_2 n)$ comparisons.

For any searching algorithm, we can draw a decision tree. The following decision tree is for binary searching of an array S with 7 elements and a target of x.

1) Draw a similar decision tree for sequential search of unsorted array S with 7 elements and a target of x.

```
x:          S: 
    initial compare

x = S[4]?
   < = >
   x = S[2]?
      < = >
      x = S[1]?
         < = >
         location 1
         F
         location 2
         F
         x = S[3]?
         < = >
         location 3
         F
         x = S[5]?
         < = >
         location 5
         F
         x = S[6]?
         < = >
         location 6
         F
         x = S[7]?
         < = >
         location 7
         F

1 2 3 4 5 6 7
```
2) What are the general characteristics of decision trees for search algorithms that compare elements?

3) What part of the decision tree represents the worst-case behavior for searching?

4) To prove the result ("best possible searching algorithm that compares items must do at least $\Theta(\log_2 n)$ comparisons"), using the decision tree what are we going to have to show (proof)?

5) How might we get around this bound to do better than a $\Theta(\log_2 n)$ searching algorithm?