“Inducing” a Decision Tree

In order to learn a decision tree, our agent will need to have some information to learn from:

a **training set** of examples

 each example is described by its **values** for the problem’s attributes

 each example is described by its output **value**, from the possible values of the target attribute

In the restaurant example, our problem attributes are “What is the estimated time?”, “What kind of food do they serve?”, and the like.

The target attribute is “Will we wait?” It is a boolean attribute: its value is either yes or no.

Problems with boolean target attributes are called **classification** problems. The learning agent is learning to recognize whether a situation is a positive example of some concept or a negative example.
An Example

Our agent’s ideal goal is to find the most efficient, correct decision tree.

Since most efficient is too hard, it will have to settle for as efficient a tree as can be found in reasonable time.

<table>
<thead>
<tr>
<th>Example</th>
<th>Attributes</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>X1</td>
<td>Yes No No Yes Some $$$$ No Yes French 0–10 Yes</td>
<td></td>
</tr>
<tr>
<td>X2</td>
<td>Yes No No Yes Full $ No No Thai 30–60 No</td>
<td></td>
</tr>
<tr>
<td>X3</td>
<td>No Yes No No Some $ No No Burger 0–10 Yes</td>
<td></td>
</tr>
<tr>
<td>X4</td>
<td>Yes No Yes Yes Full $ No No Thai 10–30 Yes</td>
<td></td>
</tr>
<tr>
<td>X5</td>
<td>Yes No Yes No Full $$$$ No Yes French >60 No</td>
<td></td>
</tr>
<tr>
<td>X6</td>
<td>No Yes No Yes Some $$$$ Yes Yes Italian 0–10 Yes</td>
<td></td>
</tr>
<tr>
<td>X7</td>
<td>No Yes No No None $ Yes No Burger 0–10 No</td>
<td></td>
</tr>
<tr>
<td>X8</td>
<td>No No No Yes Some $$$$ Yes Yes Thai >60 Yes</td>
<td></td>
</tr>
<tr>
<td>X9</td>
<td>No Yes Yes No Full $ Yes No Burger >60 No</td>
<td></td>
</tr>
<tr>
<td>X10</td>
<td>Yes Yes Yes Yes Full $$$$ No Yes Italian 10–30 No</td>
<td></td>
</tr>
<tr>
<td>X11</td>
<td>No No No No None $ No No Thai 0–10 No</td>
<td></td>
</tr>
<tr>
<td>X12</td>
<td>Yes Yes Yes Yes Full $ No No Burger 30–60 Yes</td>
<td></td>
</tr>
</tbody>
</table>

input examples a training set
attributes a set of attributes
default the default goal predicate value

output a decision tree
The Induction Algorithm

if examples is empty,
 then return default

if all examples have the same classification,
 then return that classification

if attributes is empty,
 then return the most common classification
 of the remaining examples

choose the attribute a that best discriminates among the remaining examples

create a tree t with a as its root

for each possible value v of a
 select the subset of examples ex having $\text{value}(a) = v$
 let subtree sub be the result of recursively calling the induction algorithm with ex, $(\text{attributes} - a)$,
 and the most common classification of ex
 add a branch to t with label v and subtree sub

return t

[Assume, for now that “best discriminates” means “creates subsets of roughly equal size but with some subsets having members with a common answer”.]
What Does “Best Discriminates” Mean?

Using information theory, we can compute a “right answer” to what discriminates best. Nilsson gives a simple approximation rule in Section 17.5.
The Answer...
Evaluating a Learning Algorithm

A learning algorithm is good if it produces hypotheses that do a good job predicting the values of unseen cases.

One technique for evaluating a learning algorithm:

• Partition the set of cases into two sets: a training set and a test set.

• Run the algorithm on the training set to induce a decision tree.

• Evaluate the decision tree’s performance when applied to the test set.

Experimental questions

• How do we split the case set? Size? Make-up?

• How good is good enough? Partial credit?
Evaluating the Induction Algorithm

Russell and Norvig ran an experiment on our table from the restaurant domain. They generated random sets of cases using the problem and target attributes. Then they ran 20 trials each for training set sizes of 1-100, with each training set chosen randomly from the set of all cases. On each trial, any case not in the training set was placed in the test set.

Here are the results:

This is called a happy graph. There was a pattern, and the algorithm found it.

Questions:

- What would an unhappy graph look like?
- Can a learning agent learn too much?
Exercise: Build a Decision Tree

A number of patients have shown up at the local hospital emergency room complaining of certain symptoms. Our crack staff has identified the problem as an uncommon allergic reaction to a certain food. The patients all know each other, but some of their other friends have not had this reaction.

The doctors know how to treat the reaction, but they would also like to be able to suggest some dining guidelines to this group of people so that they can avoid the reaction if they choose.

Here is a set of case data on some members of the group of friends. Use our induction algorithm to build a decision tree for dining options...

<table>
<thead>
<tr>
<th>Case #</th>
<th>Restaurant</th>
<th>Meal</th>
<th>Day</th>
<th>Cost</th>
<th>Reaction?</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Sam’s</td>
<td>breakfast</td>
<td>Saturday</td>
<td>cheap</td>
<td>yes</td>
</tr>
<tr>
<td>2</td>
<td>Lobdell</td>
<td>lunch</td>
<td>Saturday</td>
<td>expensive</td>
<td>no</td>
</tr>
<tr>
<td>3</td>
<td>Sam’s</td>
<td>lunch</td>
<td>Sunday</td>
<td>cheap</td>
<td>yes</td>
</tr>
<tr>
<td>4</td>
<td>FooBarBaz</td>
<td>breakfast</td>
<td>Monday</td>
<td>cheap</td>
<td>no</td>
</tr>
<tr>
<td>5</td>
<td>Sam’s</td>
<td>breakfast</td>
<td>Sunday</td>
<td>expensive</td>
<td>no</td>
</tr>
</tbody>
</table>
Toward a Solution
Reinforcement Learning

Induction is much different than the sort of learning that neural networks and genetic algorithms do. A program can do induction in batch from problem/solution pairs. Neural nets and GAs rely on interleaving learning with problem solving in order to get feedback.

Basic Statement:

An agent is given a sequence of trials for which it knows:

- the states it visited for each trial
- the payoff it received at the end of the trial

The agent has no knowledge of:

- the domain (full effects of actions)
- the payoff system

The agent is to learn

- the domain
- the expected value of payoff for each action
- a problem-solving policy
Types of Reinforcement Learning

Passive learning

The agent has no real control over its actions. It wants to learn the expected values of states.

Active learning

The agent can choose actions on its own. It wants to learn not only the expected values of states but also an optimal policy.

Model-based learning

The agent learns the expected payoffs of each action and then tries to learn an optimal policy.

"Q learning"

The agent tries to learn the optimal policy without knowing the payoffs or probabilities directly.