Context: Plan-Space Planning

In **state-space planning**, a program searches through a space of *world states*, seeking to find a path or paths that will take it from its initial state to a goal state.

State-space planning is too inflexible, because:

- it creates plans that are total orderings of a set of steps, and
- it assembles these plans in exactly the same order.
Plan-Space Planning Redux

In plan-space planning, a program searches through a space of plans, seeking a plan that will take it from its initial state to a goal state.

In this approach, we redefine some of the terms of our search:

- A **plan** is a set of steps and a set of constraints on the ordering of the steps.
- A **state** is a plan.
- The **goal state** is a plan that achieves all specified goals.
- An **operator** creates a new plan from an old plan.
Kinds of Operators

A refinement operator

- takes as input a partial plan, and
- adds either a step or a constraint to it.

That is, it makes the plan *more specific* by making one or more decisions left open in the partial plan.

A modification operator

- changes a constraint, or
- removes a step or a constraint, or
- does some combination of the two.

Whereas refinement operators allow the planner to “move forward” toward a goal, modification operators allow the planner to *back up*.
What is a Plan?

A plan, whether partial or complete, consists of:

- a specification of its precondition state and its postcondition state
- a set of actions, or “steps”, S_i
- a set of orderings on steps, \{ $(S_i < S_j)$, \ldots $\}$

An example of a partial plan:

- **Precondition**

 \[
 \text{armEmpty and clear(A) and on(A, B) and on(B, TABLE)}
 \]

- **Postcondition**

 \[
 \text{armEmpty and clear(B) and on(B, A) and on(A, TABLE)}
 \]

- **$S = \{ S_1, S_2 \}$**

 $S_1 = \text{stack(B, A)}$

 $S_2 = \text{stack(A, TABLE)}$

- **ORDER = \{ $(S_2 < S_1)$, \ldots $\}$**
How Do We Make Plans?

A plan-space planning algorithm will do something like:

1. \(P := \text{empty-plan}(I, G) \)

2. Loop:
 a. If \(P \) is a solution, return \(P \).
 b. Choose \(F := \text{find-flaw}(P) \)
 c. Choose \(M := \text{find-method}(P, F) \)
 d. If there is no such method, return failure.
 e. \(P := \text{fix-flaw}(P, F, M) \)

This algorithm introduces some new concepts...

- An empty plan is a plan with no steps and no constraints.

 This plan says, “Yeah, I plan to get from A to B,” but does not contain actions to do it.

- A solution is any plan that achieves the \(I \rightarrow G \).

 So, Step2a is where we do our goal test in this algorithm.
Flaws and Methods

1. \(P := \text{empty-plan}(I, G) \)

2. Loop:
 a. If \(P \) is a solution, return \(P \).
 b. Choose \(F := \text{find-flaw}(P) \)
 c. Choose \(M := \text{find-method}(P, F) \)
 d. If there is no such method, return failure.
 e. \(P := \text{fix-flaw}(P, F, M) \)

A flaw is anything wrong with a plan.

- It might be something that is undone, such as “no action achieves this part of the goal” or “no action achieves this precondition of a step in the plan”.
- However, this algorithm can construct a partial plan that is internally inconsistent. (How?)

In such a case, a flaw can be an inconsistency, such as executing one step might undo a precondition for another step.

A method is a way to fix a flaw.

Usually, a flaw is a something undone, and so a method might add a step or a constraint to the plan.
A Demo of Plan-Space Planning

Assume that a robot is given this set of operators:

\[
\text{stack}(x, y)
\]

precondition: clear(y), holding(x)
add: \text{armEmpty}, on(x, y)
delete: clear(y), holding(x)

\[
\text{unstack}(x, y)
\]

precondition: on(x, y), clear(x), \text{armEmpty}
add: holding(x), clear(y)
delete: on(x, y), \text{armEmpty}

\[
\text{pickup}(x)
\]

precondition: clear(x), on(x, \text{TABLE}), \text{armEmpty}
add: holding(x)
delete: on(x, \text{TABLE}), \text{armEmpty}

\[
\text{putdown}(x)
\]

precondition: holding(x)
add: on(x, \text{TABLE}), \text{armEmpty}
delete: holding(x)

Solve:

Initial state: B A

Goal state: A B
demonstration of above
An Exercise

Assume that a robot is given this set of operators:

stack(x, y)

precondition: clear(y), holding(x)
add: armEmpty, on(x, y)
delete: clear(y), holding(x)

unstack(x, y)

precondition: on(x, y), clear(x), armEmpty
add: holding(x), clear(y)
delete: on(x, y), armEmpty

pickup(x)

precondition: clear(x), on(x, TABLE), armEmpty
add: holding(x)
delete: on(x, TABLE), armEmpty

putdown(x)

precondition: holding(x)
add: on(x, TABLE), armEmpty
delete: holding(x)

Solve:

Initial state:

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Goal state:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
solution to above
Another Exercise

stack(x, y)

precondition: clear(y), holding(x)
add: armEmpty, on(x, y)
delete: clear(y), holding(x)

unstack(x, y)

precondition: on(x, y), clear(x), armEmpty
add: holding(x), clear(y)
delete: on(x, y), armEmpty

pickup(x)

precondition: clear(x), on(x, TABLE), armEmpty
add: holding(x)
delete: on(x, TABLE), armEmpty

putdown(x)

precondition: holding(x)
add: on(x, TABLE), armEmpty
delete: holding(x)

Solve:

Initial state:	Goal state:
A | A
B | B
C

C
A
B
C
solution to above
Flaws and Fixes in a Program

How can a program uses this approach to make plans?

The interesting new ideas here are:

- What is a flaw in a plan?
- What is a method for fixing a flaw?
- How does the program identify each?

First, a formal definition:

A proposition \(a \) is **necessarily true** before executing step \(s \) in plan \(p \) if both of the following are true:

- There is a step \(s_p \) in \(p \) such that \(s_p \) necessarily comes before \(s \) and \(s_p \) adds \(a \).

- For every step \(s_d \) in \(p \) that may delete \(a \), either \(s_d \) necessarily comes before \(s_p \) or \(s_d \) necessarily comes after \(s \).

What does “necessarily” mean here?
Using the Modal Truth Criterion

Now, we can define flaws and methods:

- A flaw is any precondition a of a step s that is not necessarily true before executing s.

- To fix a flaw, do both of the following:
 - Make sure that a is made true before executing s.
 You can add a new step s_p and make it necessarily prior to s.
 Or you can choose an s_p that is already in the plan and add an ordering constraint.
 - Make sure that a is not clobbered by some s_d.
 You can change the variable bindings on some s_d so that it necessarily does not delete a.
 Or you can add an ordering so that s_d must either come before s_p or come after s.
Applying the MTC

A flaw is any precondition a of a step s that is not necessarily true before executing s.

To fix a flaw, do both of the following:

- Make sure that a is made true before executing s.
- Make sure that a is not clobbered by some s_d.

Example 1:

- put on left sock
- put on left shoe
- put on right shoe

Example 2:

- put on left sock
- put on left shoe
- take off left sock
Partial-Order Planning

This style of planning is called *partial-order planning* (POP), because it enables a planner to construct plans that are only partially ordered and thus only complete enough to accomplish its goal.

Such a plan leaves the agent that will use it as much flexibility as possible at “execution time”.

The POP algorithm that uses the MTC and causal links is the culmination of a progression of increasingly more sophisticated planning algorithms.

POP satisfies our three key ideas from two sessions ago:

- States and operators are decomposable.
- It can add an action to the plan at any place.
- It decomposes a problem into sub-tasks, solves them separately, and re-assemble the solutions.

Sometimes, though, it comes up short in practice. So it is the subject of continued research!