
Super-Fast Distributed Algorithms for Metric
Facility Location

Andrew Berns, James Hegeman, and Sriram V. Pemmaraju ⋆

Department of Computer Science
The University of Iowa

Iowa City, Iowa 52242-1419, USA
[andrew-berns,james-hegeman,sriram-pemmaraju]@uiowa.edu

Abstract. This paper presents a distributed O(1)-approximation algo-
rithm in the CONGEST model for the metric facility location prob-
lem on a size-n clique network that has an expected running time of
O(log log n · log∗

n) rounds. Though metric facility location has been
considered by a number of researchers in low-diameter settings, this is
the first sub-logarithmic-round algorithm for the problem that yields
an O(1)-approximation in the setting of non-uniform facility opening
costs. Since the facility location problem is specified by Ω(n2) bits of
information, any fast solution in the CONGEST model must be truly
distributed. Our paper makes three main technical contributions. First,
we show a new lower bound for metric facility location. Next, we demon-
strate a reduction of the distributed metric facility location problem to
the problem of computing an O(1)-ruling set of an appropriate spanning
subgraph. Finally, we present a sub-logarithmic-round (in expectation)
algorithm for computing a 2-ruling set in a spanning subgraph of a clique.
Our algorithm accomplishes this by using a combination of randomized
and deterministic sparsification.

1 Introduction

This paper explores the design of “super-fast” distributed algorithms in settings
in which bandwidth constraints impose severe restrictions on the volume of in-
formation that can quickly reach an individual node. As a starting point for
our exploration, we consider networks of diameter one (i.e., cliques) so as to
focus on bandwidth constraints only and avoid penalties imposed by network
distance between nodes. We assume the standard CONGEST model [19], which
is a synchronous message-passing model in which each node in a size-n network
can send a message of size O(log n) along each incident communication link in
each round. By “super-fast” algorithms we mean algorithms whose running time
is strictly sub-logarithmic, in any sense - deterministic, in expectation, or with
high probability (w.h.p.). Several researchers have previously considered the de-
sign of such “super-fast” algorithms; see [10,12,18] for good examples of relevant

⋆ This work is supported in part by National Science Foundation grant CCF 0915543

concepts. The working hypothesis is that in low-diameter (communication) set-
tings, where congestion, rather than network distance, is the main bottleneck,
we should be able to design algorithms that are much faster than algorithms for
“local” problems in high-diameter settings.

The focus of this paper is the distributed facility location problem, which has
been considered by several researchers [6,14,16,17] in low-diameter settings. We
first describe the sequential version of the problem. The input to the facility
location problem consists of a set of facilities F = {x1, x2, . . . , xm}, a set of
clients C = {y1, y2, . . . , yn}, an opening cost fi associated with each facility xi,
and a connection cost D(xi, yj) between each facility xi and client yj . The goal
is to find a subset F ⊆ F of facilities to open so as to minimize the facility
opening cost plus connection costs, i.e.,

FacLoc(F) :=
∑

xi∈F

fi +
∑

yj∈C
D(F, yj)

where D(F, yj) := minxi∈F D(xi, yj). Facility location is an old and well-studied
problem in operations research [1,3,4,8,21] that arises in contexts such as locating
hospitals in a city or locating distribution centers in a region.

The metric facility location problem is an important special case of facility
location in which the connection costs satisfy the following “triangle inequality:”
for any xi, xi′ ∈ F and yj , yj′ ∈ C, D(xi, yj)+D(yj , xi′)+D(xi′ , yj′) ≥ D(xi, yj′).
The facility location problem, even in its metric version, is NP-complete and find-
ing approximation algorithms for the problem has been a fertile area of research.
A series of constant-factor approximation algorithms have been proposed for the
metric facility location problem, with a steady improvement in the constant
specifying the approximation factor. See [11] for a recent 1.488-approximation
algorithm. This result is near-optimal because it is known [7] that the met-
ric facility location problem has no polynomial-time algorithm yielding an ap-
proximation guarantee better than 1.463 unless NP ⊆ DTIME(nO(log log n)).
For non-metric facility location, a simple greedy algorithm yields an O(log n)-
approximation, and this is also optimal (to within a constant factor) because it
is easy to show that the problem is at least as hard as set cover.

More recently, the facility location problem has also been used as an abstrac-
tion for the problem of locating resources in wireless networks [5,15]. Motivated
by this application, several researchers have considered the facility location prob-
lem in a distributed setting. In [14,16,17], the underlying communication net-
work is a complete bipartite graph with F and C forming the bipartition. At
the beginning of the algorithm, each node, whether it is a facility or a client,
has knowledge of the connection costs between itself and all nodes in the other
part. In addition, the facilities know their opening costs. In [6], the underlying
communication network is a clique. Each node in the clique may choose to open
as a facility, and each node that does not open will connect to an open facility.
Note that all of the aforementioned work assumes the CONGEST model of dis-
tributed computation. The facility location problem considered in [15] assumes
that the underlying communication network is a unit disk graph (UDG), and

also considers the LOCAL model. While such a network can be of high diameter
relative to the number of nodes in the network, this paper [15] reduces the UDG
facility location problem to a low-diameter facility location-type problem and
uses this in the eventual solution.

None of the prior papers, however, achieve near-optimal approximation (i.e.,
constant-factor in the case of metric facility location and O(log n) in the case
of non-metric facility location) in sub-logarithmic rounds. While [6] does present
a constant-round, constant-factor approximation to metric facility location on a
clique, it is only for the special case of uniform metric facility location, i.e., when
all facility opening costs are identical. The question that drives this paper, then,
is the following: Can we achieve a distributed constant-factor approximation
algorithm for the metric facility location problem in the clique setting in strictly
sub-logarithmic time? One can ask similar questions in the bipartite setting and
for non-metric facility location as well, but as a first step we focus on the metric
version of the facility location problem on a clique.

Distributed facility location is challenging even in low-diameter settings be-
cause the input consists of Θ(m ·n+m) pieces of information, distributed across
the network, which cannot quickly be delivered to a single node (or even a
small number of nodes) due to the bandwidth constraints of the CONGEST
model. Therefore, any fast distributed algorithm for the problem must be truly
distributed and needs to take advantage of the available bandwidth and of struc-
tural properties of approximate solutions. Also worth noting is that even though
tight lower bounds on the running times of distributed approximation algorithms
have been established [9], none of these bounds extend to low-diameter settings.

2 Results

Main result. The main result of this paper is an O(1)-approximation algorithm
for metric facility location on a clique which has an expected running time of
O(log log n · log∗ n) rounds. If the metric satisfies additional properties (e.g.,
it has constant doubling dimension), then we obtain an O(log∗ n)-round O(1)-
approximation to the problem. Our results are achieved via a combination of
techniques that include (i) a new lower bound for the optimal cost of metric
facility location and (ii) a sparsification technique combining randomization with
a deterministic subroutine that repeatedly leverages the available bandwidth to
process sparse subgraphs.

2.1 Overview of Technical Contributions

We start by describing the distributed facility location problem on a clique, as in
[6]. Let (P,D) be a discrete metric space with point set P = {p1, p2, . . . , pn}. Let
fi be the opening cost of pi. Now view the metric space (P,D) as a completely
connected size-n network C = (P,E) with each point pi represented by a node,
which we will also call pi. Each node pi knows fi and the connection costs
(distances) D(pi, pj) for all pj ∈ P . The problem is to design a distributed

algorithm that runs on C in the CONGEST model and produces a subset X ⊆
P such that each node pi ∈ X opens and provides services as a facility and
each node pi 6∈ X connects to the nearest open node. The goal is to guarantee
that FacLoc(X) ≤ α · OPT , where OPT is the cost of an optimal solution to
the given instance of facility location and α is some constant. We call this the
CliqueFacLoc problem. Of course, we also want our algorithm to be “super-
fast” (in some sense), i.e., terminate in o(log n) rounds.

Our paper makes three main technical contributions.

– A new lower bound for metric facility location. For p ∈ P , let B(p, r)
denote the set of points q ∈ P satisfying D(p, q) ≤ r. For each pi, let ri be
the non-negative real number satisfying

∑

q∈B(pi,ri)

(ri − D(pi, q)) = fi

As observed by Mettu and Plaxton [13], ri exists and is unique. Bădoiu et
al. proved in [2] that

∑n
i=1 ri is a constant-factor approximation for OPT in

the case of uniform facility opening costs. This fact plays a critical role in
the design of the constant-round, constant-factor approximation algorithm of
Gehweiler et al. [6] for the special case of CliqueFacLoc in which all facility
opening costs are identical. However, the sum

∑n
i=1 ri can be arbitrarily

large compared to OPT when the fi’s are allowed to vary. (Consider an
example consisting of only two nodes, one of whose opening costs is large in
comparison to the other and to the distance between them.) Therefore, we
apply the idempotent transformation

ri → r̄i = min
1≤j≤n

{D(pi, pj) + rj},

and use r̄i instead of ri to derive a lower bound. Note that for any i, r̄i ≤ ri.
We show later that

∑n
i=1 r̄i bounds the optimal cost OPT from below (to

within a constant factor) in the general case of non-uniform facility opening
costs.

– Reduction to an O(1)-ruling set. Our next contribution is an O(1)-round
reduction of the distributed facility location problem on a clique to the prob-
lem of computing an O(1)-ruling set of a specific spanning subgraph. Let
C ′ = (P,E′) be a spanning subgraph of C. A subset Y ⊆ P is said to be
independent if no two nodes in Y are neighbors in C ′. An independent set
Y is a maximal independent set (MIS) if no superset Y ′ ⊃ Y is independent
in C ′. An independent set Y is β-ruling if every node in P is at most β hops
along edges in C ′ from some node in Y . Clearly, an MIS is a 1-ruling set. We
describe an algorithm that approximates distributed facility location on a
clique by first computing a spanning collection of subgraphs C1, C2, C3, . . .
in O(1) rounds. Then we show that a solution to the facility location problem
(i.e., a set of nodes to open) can be obtained by computing a β-ruling set for
each of the subgraphs Cj , j ≥ 1, and combining the solutions in a certain

way. We show that combining the β-ruling sets can also be done in O(1)
rounds. The parameter β affects the approximation factor of the computed
solution and enforcing β = O(1) ensures that the solution to facility location
is an O(1)-approximation.

– An O(1)-ruling set via a combination of randomized and determin-

istic sparsification. We present an expected-O(log log n · log∗ n)-round al-
gorithm for computing a 2-ruling set of a given spanning subgraph C ′ of a
clique C. We start by describing a deterministic “subroutine” that takes a
subset Z ⊆ P as input and computes an MIS of C ′[Z] (i.e., the subgraph of
C ′ induced by Z) in c rounds if C ′[Z] has at most c ·n edges. This is achieved
via a simple load-balancing scheme that communicates the entire subgraph
C ′[Z] to all nodes in c rounds. We then show how to use randomization
repeatedly to peel off subgraphs with linearly many edges for processing by
the aforementioned subroutine. In this manner, the entire graph C ′ can be
processed using a number of calls, to the deterministic subroutine, which is
O(log log n · log∗ n) in expectation.

3 Reduction to the O(1)-Ruling Set Problem

3.1 A New Lower Bound for Non-uniform Metric Facility Location

In this subsection we show that
∑n

i=1 r̄i is a constant-factor lower bound to
the optimal cost OPT . To facilitate this, we recall a definition from Mettu and
Plaxton [13]. The charge(·, ·) of a node pi with respect to a collection of (open)
facilities X (also known as a configuration) is defined by

charge(pi,X) = D(pi,X) +
∑

pj∈X

max{0, rj − D(pj , pi)}

where D(pi,X) = minpj∈X D(pi, pj). Mettu and Plaxton showed that the cost
of a configuration X, FacLoc(X), is precisely equal to the sum of the charges
with respect to X, i.e.

∑n
i=1 charge(pi,X) [13].

The Mettu-Plaxton configuration FMP is derived from the Mettu-Plaxton
algorithm [13]. This algorithm, referred to as the MP-algorithm, is a sequential,
greedy algorithm for facility location on a clique in which facilities open (sequen-
tially) precisely when there is no already-open facility within distance 2 · ri [13].
Our algorithm borrows from the core ideas of the MP-algorithm.

The FMP configuration was shown to have a cost at most three times OPT
[13]. So for any configuration X,

FacLoc(X) ≥ 1

3
FacLoc(FMP) =

1

3

n
∑

i=1

charge(pi, FMP)

We now present the following lemma, which relates FacLoc(X) (for any X)
to

∑n
i=1 r̄i.

Lemma 1. FacLoc(X) ≥ (
∑n

i=1 r̄i)/6 for any configuration X.

3.2 Algorithm

We present our facility location algorithm in Algorithm 1. Our distributed algo-
rithm consists of three stages. We use the notations G[H] and E[G] to refer to
the subgraph induced by H and the edge set of G, respectively.

Algorithm 1 FacilityLocation

Input: A discrete metric space of nodes (P,D), with opening costs;
a sparsity parameter s
Assumption: Each node knows its own opening cost and the distances from
itself to other nodes
Output: A subset of nodes (a configuration) to be declared open

1. Each node pi computes and broadcasts its value ri; r0 := mini ri.
2. Each node computes a partition of the network into classes Hk with

3k · r0 ≤ rj < 3k+1 · r0 for pj ∈ Hk.
3. Each node determines its neighbors within its own class;

for pi, pj ∈ Hk, (pi, pj) ∈ E[G[Hk]] if and only if D(pi, pj) ≤ ri + rj .
4. All nodes now use procedure RulingSet(

⋃

k G[Hk], s) to determine, for
each k, a sparse set Tk ⊆ Hk.

5. Each node broadcasts its membership status with respect to the sparse set
Tk of its own class.

6. A node pi ∈ Hk declares itself to be open if:
(i) pi is a member of the sparse set Tk ⊆ Hk, and
(ii) There is no node pj belonging to a class Hk′ , with k′ < k,

such that D(pi, pj) ≤ 2ri.
7. Each node broadcasts its status (open or not), and nodes connect.

Stage 1 (Steps 1-2). Each node knows its own opening cost and the distance
to other nodes, so node pi computes ri and broadcasts that value to all others.
Once this is complete, each node knows all of the ri values. Next, every node
computes a partition of the network into groups whose ri values vary by at most
a factor of 3 (Step 2). Specifically, let r0 := min1≤j≤n{rj}, and define the class
Hk to be the set of nodes pi such that 3k · r0 ≤ ri < 3k+1 · r0. Every node
computes the class into which each node in the network, including itself, falls.

Stage 2 (Steps 3-5). We now focus our attention on class Hk. Suppose pi, pj ∈ Hk.
We define pi and pj to be adjacent in class Hk if D(pi, pj) ≤ ri + rj . Each node
in Hk can determine its neighbors in Hk. We refer to the graph on nodes in Hk

induced by this adjacency condition as G[Hk]. Next, consider the graph (on all
n nodes)

⋃

k G[Hk] which is the union of all induced graphs G[Hk]. A sparse set
of nodes in

⋃

G[Hk] determines, for each k, a sparse set Tk ⊆ Hk. Therefore,
apply procedure RulingSet() to

⋃

k G[Hk]. We describe a super-fast-expected-

time implementation of RulingSet() in Section 4. After a sparse set has been
constructed for each class Hk, each node broadcasts its membership status.

Stage 3 (Steps 6-7). Finally, a node pi in class Hk opens if (i) pi ∈ Tk, and (ii)
there is no node pj ∈ B(pi, 2ri) of a class Hk′ with k′ < k. Open facilities declare
themselves via broadcast, and every node connects to the nearest open facility.

3.3 Analysis

We show that our algorithm produces an O(s)-approximation to CliqueFa-

cLoc in O(T (n, s)) communication rounds, where T (n, s) is the running time
(in rounds) of procedure RulingSet().

Communication rounds. Stage 1 requires exactly one round of communication, to
broadcast ri values. Stage 2 requires O(T (n, s)) rounds to compute the s-sparse
subsets {Tk}k, and an additional round to broadcast membership status. Stage 3
requires one round, in order to inform others of a nodes decision to open or not.
Thus, the running time of our algorithm in communication rounds is O(T (n, s)).

Cost approximation. Let F be the set of nodes opened by our algorithm. We ana-
lyze FacLoc(F) by bounding charge(pi, F) for each pi. Recall that FacLoc(F) =
∑n

i=1 charge(pi, F). Since charge(pi, F) is the sum of two terms, D(pi, F) and
∑

pj∈F max{0, rj − D(pj , pi)}, we bound each separately by a O(s)-multiple of
r̄i.

Algorithm 2 RulingSet

Input: An undirected graph G = (V,E); a sparsity parameter s
Assumptions: Each node has knowledge of its neighbors in G; each node can
send a message to any other node (not just along edges of G)
Output: An independent s-ruling set T ⊆ G

The sparse subset Tk ⊆ Hk has the property that for any node pi ∈ Hk,
D(pi, Tk) ≤ 2 · 3k+1r0 · s, where s is the sparsity parameter passed to procedure
RulingSet(). Also, for no two members of Tk is the distance between them less
than 2 ·3kr0. Note that here we are using distances from the metric D of (P,D).

Now, in our cost analysis, we consider a node pi ∈ Hk. To bound D(pi, F),
observe that either pi ∈ Tk, or else there exists a node pj ∈ Tk such that
D(pi, pj) ≤ 2·3k+1r0 ·s ≤ 6ri ·s. Also, if a node pj ∈ Tk does not open, then there
exists another node pj′ in a class Hk′ , with k′ < k, such that D(pj , pj′) ≤ 2rj .

We are now ready to bound the components of charge(pi, F).

Lemma 2. For all i, D(pi, F) ≤ (81s + 81) · r̄i.

Lemma 3. For all i,
∑

pj∈F max{0, rj − D(pj , pi)} ≤ 9r̄i.

Combining the two previous lemmas gives

FacLoc(F) =

n
∑

i=1

charge(pi, F) =

n
∑

i=1



D(pi, F) +
∑

pj∈F

max{0, rj − D(pj , pi)}





≤
n

∑

i=1

[(81s + 81) · r̄i + 9r̄i] ≤ (81s + 90) ·
n

∑

i=1

r̄i

Theorem 1. Algorithm 1 (FacilityLocation) computes an O(s)-factor ap-
proximation to CliqueFacLoc in O(T (n, s)) rounds, where T (n, s) is the run-
ning time of the RulingSet() procedure called with argument s.

4 Computing a 2-Ruling Set

The facility location algorithm in Section 3 depends on being able to efficiently
compute an independent β-ruling set, for small β, of an arbitrary spanning sub-
graph C ′ of a clique C. This section describes how to compute an (independent)
2-ruling set of C ′ in a number of rounds which is O(log log n · log∗ n) in expec-
tation.

4.1 A Useful Subroutine

We first present a deterministic subroutine for efficiently computing a maximal
independent set of a sparse, induced subgraph of C ′. For a subset M ⊆ P , we
use C ′[M] to denote the subgraph of C ′ induced by M and E[M] and e[M] to
denote the set and number (respectively) of edges in C ′[M]. The subroutine we
present below computes an MIS of C ′[M] in e[M]/n rounds. Later, we use this
repeatedly in situations where e[M] = O(n).

We assume that nodes in P have unique identifiers and can therefore be
totally ordered according to these. Let ρi ∈ {0, 1, . . . , n − 1} denote the rank
of node pi in this ordering. Imagine (temporarily) that edges are oriented from
lower-rank nodes to higher-rank nodes and let E(pi) denote the set of outgoing
edges incident on pi. Let di denote |E(pi)|, the outdegree of pi, and let Di =
∑

j:ρj<ρi
dj denote the outdegree sum of lower-ranked nodes.

The subroutine shares the entire topology of C ′[M] with all nodes in the
network. To do this efficiently, we map each edge e ∈ E[M] to a node in P .
Information about e will be sent to the node to which e is mapped. Each node
will then broadcast information about all edges that have been mapped to it.
See Algorithm 3.

Theorem 2. Algorithm 3 computes an MIS L of C ′[M] in e[M]
n +O(1) rounds.

Algorithm 3 Deterministic MIS for Sparse Graphs

Input: A subset of nodes M ⊆ P
Output: An MIS L of C ′[M]
Algorithm executed by node pi

1. Broadcast ID.
2. Calculate and broadcast di.
3. Assign a distinct label ℓ(e) from {Di,Di + 1, . . . ,Di + di − 1} to each

incident outgoing edge e.
4. Send each outgoing edge e to a node pj with rank ρj = (ℓ(e) mod n).
5. Broadcast all edges received in previous step, one per round.
6. Compute C ′[M] from received edges and use a deterministic algorithm to

locally compute MIS L.

4.2 Algorithm

We are now ready to present an algorithm for computing a 2-ruling set of C ′

which is “super-fast” in expectation. We show that this algorithm has an ex-
pected running time of O(log log n · log∗ n) rounds. The algorithm proceeds in
Stages. In Stage i, i = 1, 2, . . . we process nodes whose degrees (in graph C ′) lie

in the range [n1/2i

, n1/2i−1

). At the end of Stage i, every node has degree less

than n1/2i

; thus the algorithm consists of O(log log n) Stages.
Each Stage consists of Phases. Consider the Stage in which we process the

set S(d) of nodes whose degrees are in the range [d, d2). In each Phase of this
Stage, |S(d)| decreases. To understand the rate at which this occurs, consider the

function t(k) defined recursively by t(0) = 1, t(k+1) = e
√

t(k), for all k ≥ 0. This
is a rapidly-growing function that reaches n in O(log∗ n) steps. At the beginning
of Phase k, |S(d)| ≤ n/t(k), and as Phase k proceeds, S(d) shrinks. Phase k ends
when |S(d)| ≤ n

t(k+1) (loop starting in Line 6). Because of the rate at which t(k)

grows, each Stage consists of O(log∗ n) Phases.
Each Phase consists of Iterations. Consider the Stage in which we process

nodes with degrees in [d, d2), and then consider an Iteration in Phase k of this
Stage. In this Iteration, nodes in S(d) join a set M independently with proba-
bility q =

√

t(k)/d (Line 8). Nodes not in S(d) join M with probability 1/
√

d
(Line 9). The probability q is set such that the expected number of edges in
C ′[M] is bounded above by 2n. Once the set M is picked, we use Algorithm 3
to process C ′[M] in O(1) rounds, and then we delete M and its neighborhood
N(M) (Lines 10-12). This ends an Iteration. In expectation, only a constant
number of Iterations are needed to complete a Phase. Because the size of S(d)
decreases during a Phase, we can raise q (Line 15) while still ensuring that the
expected number of edges in C ′[M] is ≤ 2n. Within a Stage, q is increased until
it reaches 1/

√
d. As well, by the time q reaches 1/

√
d, S(d) will have diminished

such that |E[C ′[S(d)]]| = O(n). The S(d) remnant can then be processed in O(1)
time (Lines 18-20) to finish the Stage. See Algorithm 4.

Algorithm 4 Super-Fast 2-Ruling Set

Input: A spanning subgraph C ′ of the clique C
Output: A 2-ruling set T ⊆ P of C ′

1. i = 1; d :=
√

n (equal to n1/2i

); T := ∅
2. while d > 10 do

Start of Stage i:

3. k := 0; q := 1
d (equal to

√

t(k)/d);
4. S(d) := {p ∈ P : degC′(p) ≥ d}; lastPhase := false;

5. while (true) do

Start of Phase k:
6. while (|S(d)| > n

t(k+1) and ¬lastPhase)

or (|S(d)| > n

e
√

d
and lastPhase) do

Start of Iteration

7. M := ∅
8. Add each p ∈ S(d) to M with probability q.
9. Add each p ∈ P \ S(d) to M with probability 1√

d
.

10. Compute an MIS L on M using Algorithm 3.
11. T := T ∪ L
12. Remove (M ∪ N(M)) from C ′.
13. S(d) := {p ∈ P : degC′(p) ≥ d}

End of Iteration

14. if lastPhase then break;

15. q :=

√
t(k+1)

d ; k := k + 1;

16. if q > 1√
d

then

17. q := 1√
d
; lastPhase := true;

End of Phase

18. M := S(d); Compute an MIS L on M using Algorithm 3.
19. T := T ∪ L
20. Remove (M ∪ N(M)) from C ′.

21. d := n1/2i+1

; i := i + 1
End of Stage

22. M := C ′; Compute an MIS L on M using Algorithm 3.
23. T := T ∪ L
24. Output T .

4.3 Analysis

Lemma 4. Algorithm 4 computes a 2-ruling set of C ′.

Lemma 5. For any d ≥ 0, the smallest k for which t(k) ≥ d is O(log∗ d).

Lemma 6. Consider Phase k in Stage i. Let d = n1/2i

. Then the maximum
degree (in C ′) of a node during Phase k is less than d2. Furthermore, |S(d)| ≤
n/t(k).

Lemma 7. In any Iteration, the expected number of edges in the subgraph (of
C ′) induced by M is bounded above by 2n.

Lemma 8. Fix a Stage i, and suppose that t(k) ≤ d. Then the expected number
of Iterations (Lines 7-13) required in Phase k before |S(d)| ≤ n

t(k+1) is O(1).

Lemma 9. Fix a Stage i, and suppose that t(k) ≤ d < t(k + 1). Then the
expected number of Iterations required in Phase k + 1 before |S(d)| ≤ n

e
√

d
is

O(1), and at the end of Phase k + 1, the number of edges in C ′[S(d)] is O(n).

Theorem 3. Algorithm 4 computes a 2-ruling set of C ′ and has an expected
running time of O(log log n · log∗ n) communication rounds.

5 Conclusions

Using Algorithm 4 as a specific instance of the procedure RulingSet() for s = 2
and combining Theorems 1 and 3 leads us to Theorem 4. We also note that under
special circumstances an O(1)-ruling set of a spanning subgraph of a clique can
be computed even more quickly. For example, if the subgraph of C induced by the
nodes in class Hk is growth-bounded for each k, then we can use the Schneider-
Wattenhofer [20] result to compute an MIS for G[Hk] in O(log∗ n) rounds (in the
CONGEST model). It is easy to see that if the metric space (P,D) is Euclidean
with constant dimension or even has constant doubling dimension, Hk would be
growth-bounded for each k.

Theorem 4. There exists an algorithm that solves the CliqueFacLoc problem
with an expected running time of O(log log n · log∗ n) communication rounds.

Theorem 5. The CliqueFacLoc problem can be solved in O(log∗ n) rounds
on a metric space of constant doubling dimension.

References

1. Balinski, M.: On finding integer solutions to linear programs. In: Proceedings of
IBM Scientific Computing Symposium on Combinatorial Problems. pp. 225—–248
(1966)

2. Bădoiu, M., Czumaj, A., Indyk, P., Sohler, C.: Facility location in sublinear time.
In: ICALP. pp. 866—–877 (2005)

3. Cornuejols, G., Nemhouser, G., Wolsey, L.: Discrete Location Theory. Wiley (1990)
4. Eede, M.V., Hansen, P., Kaufman, L.: A plant and warehouse location problem.

Operational Research Quarterly 28(3), 547—–554 (1977)
5. Frank, C.: Algorithms for Sensor and Ad Hoc Networks. Springer (2007)
6. Gehweiler, J., Lammersen, C., Sohler, C.: A distributed O(1)-approximation algo-

rithm for the uniform facility location problem. In: Proceedings of the eighteenth
annual ACM symposium on Parallelism in algorithms and architectures. pp. 237–
243. SPAA ’06, ACM, ACM Press, New York, NY, USA (2006)

7. Guha, S., Khuller, S.: Greedy strikes back: Improved facility location algorithms.
In: Proceedings of the ninth annual ACM-SIAM symposium on Discrete algo-
rithms. pp. 649—–657. Society for Industrial and Applied Mathematics (1998)

8. Hamburger, M.J., Kuehn, A.A.: A heuristic program for locating warehouses. Man-
agement science 9(4), 643—–666 (1963)

9. Kuhn, F., Moscibroda, T., Wattenhofer, R.: Local Computation: Lower and Upper
Bounds. CoRR abs/1011.5470 (2010)

10. Lenzen, C., Wattenhofer, R.: Brief announcement: Exponential speed-up of lo-
cal algorithms using non-local communication. In: Proceeding of the 29th ACM
SIGACT-SIGOPS symposium on Principles of distributed computing. pp. 295—–
296. ACM (2010)

11. Li, S.: A 1.488-approximation algorithm for the uncapacitated facility location
problem. In: Proceedings of the 38th international colloquium on automata, lan-
guages and programming. pp. 77—–88. ICALP ’11, Springer-Verlag, Berlin, Hei-
delberg (2011)

12. Lotker, Z., Patt-Shamir, B., Pavlov, E., Peleg, D.: Minimum-weight spanning tree
construction in O(log log n) communication rounds. SIAM J. Comput. 35(1), 120—
–131 (2005)

13. Mettu, R.R., Plaxton, C.G.: The online median problem. SIAM J. Comput. 32(3),
816—–832 (2003)

14. Moscibroda, T., Wattenhofer, R.: Facility location: distributed approximation. In:
Proceedings of the twenty-fourth annual ACM symposium on Principles of dis-
tributed computing. pp. 108—–117. ACM, ACM Press, New York, NY, USA (2005)

15. Pandit, S., Pemmaraju, S.V.: Finding facilities fast. Distributed Computing and
Networking pp. 11—–24 (2009)

16. Pandit, S., Pemmaraju, S.V.: Return of the primal-dual: distributed metric facility
location. In: Proceedings of the 28th ACM symposium on Principles of distributed
computing. pp. 180—–189. PODC ’09, ACM, ACM Press, New York, NY, USA
(2009)

17. Pandit, S., Pemmaraju, S.V.: Rapid randomized pruning for fast greedy distributed
algorithms. In: Proceedings of the 29th ACM SIGACT-SIGOPS symposium on
Principles of distributed computing. pp. 325—–334. ACM (2010)

18. Patt-Shamir, B., Teplitsky, M.: The round complexity of distributed sorting: ex-
tended abstract. In: PODC. pp. 249—–256. ACM Press (2011)

19. Peleg, D.: Distributed computing: a locality-sensitive approach, vol. 5. Society for
Industrial and Applied Mathematics (2000)

20. Schneider, J., Wattenhofer, R.: A log-star distributed maximal independent set
algorithm for growth-bounded graphs. In: Proceedings of the twenty-seventh ACM
symposium on Principles of distributed computing. pp. 35—–44. ACM (2008)

21. Stollsteimer, J.F.: A working model for plant numbers and locations. Journal of
Farm Economics 45(3), 631—–645 (1963)

	Super-Fast Distributed Algorithms for Metric Facility Location

