
UNI CS 1510 (Fall 2022)
Introduction to Computing, Sections 01–06

Course Syllabus

Course Information
Course Name and Number

CS 1510 Introduction to Computing

Meeting Times

Lecture (Sections 01-03): MWF 9:00am–9:50am Wright 109
Lecture (Sections 04-06): MWF 10:00am–10:50am Wright 010
Lab (Sections 01, 04): Th 8:00am–9:50am Wright 112
Lab (Sections 02, 05): Th 10:00am–11:50am Wright 112
Lab (Sections 03, 06): Th 3:30pm–5:20pm Wright 112

Contact Information
 (Lead Professor): Sarah Diesburg
 Office: EBAR 39
 Email: cs1510-help@uni.edu
 Office hours: Zoom only. Schedule here: https://tinyurl.com/yeysxdy3

Class website: Available through UNI eLearning: https://elearning.uni.edu
(Lab Instructor): Mark Jacobson – mark.jacobson@uni.edu

Credit Hours
 4 Credit Hours (3 for lecture, 1 for lab)
 This course meets the Course Credit Hour Expectation outlined in the Course Catalog. Students should

expect to work approximately 2 hours per week outside of class for every course credit hour.

Course Materials (Required)

Lecture notes (posted on the class Web site)
Follow these directions to obtain access to your mandatory online textbook:
o Sign in or create an account at http://learn.zybooks.com
o Enter zyBook code: UNICS1510DiesburgFall2022
o Subscribe

Course Description

Introduction to software development through algorithmic problem solving and procedural abstraction.
Programming in the small. Fundamental control structures, data modeling, and file processing. Significant
emphasis on program design and style. (Fall and Spring)

Course Learning Outcomes

1. Students can analyze a programming problem and create a programming solution using the basics of
programming:

a. actions (input, processing, output)
b. control structures (selection, repetition)

mailto:cs1510-help@uni.edu
https://tinyurl.com/yeysxdy3
https://elearning.uni.edu/
mailto:mark.jacobson@uni.edu
http://learn.zybooks.com/

c. basic data structures (strings, arrays/lists, hash tables/dictionaries)
d. modularization (student-written procedures/functions)
e. data persistence (file input and output)

2. Students will increase their problem solving skills by creating programming solutions to solve real-

world problems.
3. Students will increase their communication skills by writing readable programs suitable for

collaboration with others.

Performance Evaluation

Grade Determination

The final grade you earn in this course will be based on the points accumulated over five activities as
described below.

Note: In-person programming exam may be merged with the concept exam if UNI classes are moved
completely online.

Activity Quantity Points
Lab Work 12 @ 10 pts each 120
Individual Homework 10 @ 25 pts each 250
Concept Exams 125 and 150 points 275
Programming Exams 2 @ 125 pts each 250
zyBook Participation Activities 15 @ 7 pts each 105
Total 1000

To continue on to the next class in the computer science major, you must earn at least a C.

Grading Scale
100 – 92 A 77.9 – 72 C
91.9 – 90 A- 71.9 – 70 C-
89.9 – 88 B+ 69.9 – 68 D+
87.9 – 82 B 67.9 – 62 D
81.9 – 80 B- 61.9 – 60 D-
79.9 – 78 C+ 59.9 – 0 F

Class Attendance and Participation

If you miss a class due to illness, quarantine, or any other reason, it is your responsibility to find out what
was covered by watching the recording of the live Zoom lectures (link found on elearning). If you must
miss an in-persona lab, you must let us know as soon as possible so that you do not fall too far behind.

ZyBook Participation and Challenge Activities

Your textbook is an interactive online textbook. You will be graded for completing participation activities
before class on the day they are assigned. Again, participation activities are due before class. Challenge
activities are not graded. They are good practice, and we will often go over them in class as sample
problems.

In-lab work

Lab is designed to be a time to allow you to learn new skills, apply and practice existing skills, and prepare
yourself for the upcoming lectures and programming assignment. Points for these activities will be
assigned based on level of difficulty for each activity and will be awarded for successful completion and/or
effort.

Programming Assignments

Programming assignments are designed to take what you have learned in lab and during lecture, and apply
these skills to a program on a scale larger than that explored in-lab. It is expected that you will complete
all assignments as an individual unless otherwise instructed (see section on scholastic conduct). If you
have questions concerning an assignment, feel free to consult an instructor, come to office hours, or consult
a class TA.

All assignments are due at their assigned date and time, and will be accepted up If you must turn in an
assignment late to due sickness or other approved reason, you should let us know as soon as possible so
that you don’t fall behind.

Description of Assignments

• Create a series of basic programs that (1) ask for input, (2) make calculation(s), and (3) display output.
• Create a series of programs that use selection statements to make choices based on input.
• Create a series of programs that use looping (repetition) to solve problems.
• Create program(s) that use nested looping (repetition) to solve problem(s).
• Create program(s) that demonstrate the use of advanced string functionality to solve problem(s).
• Create program(s) that illustrate the use of functions/procedures to solve problem(s).
• Create program(s) that read data from an external file, use data manipulation, and write output to a new

file.
• Create program(s) that use lists/arrays as an internal data structure to solve problem(s).
• Create program(s) that use dictionaries/hash tables as an internal data structure to solve problem(s).
• Create a program design document for a program that involves many of the above components to solve a

problem.
• Create programs(s) that use many or all of the above elements to solve problem(s).

Homeworks will by default be assigned after the lab period for which the new concept will be introduced.
Please consult the main website for exact homework due dates and late policies.

Exams

There are a total of four exams this semester.
• Two will be concept exams offered during the lecture part of the course.
• Two will be programming exams offered during the lab portion of the course.

By default these exams are closed-book/closed-notes exams. The dates of these exams are listed on the
class schedule. You are expected to be present for these exams unless you have made prior arrangements.
Make-up exams will be offered under very limited circumstances. If you are aware of conflicts prior to the
exam, please bring these to my attention as early as possible.

Incompletes

Incompletes are awarded only in very rare instances when an unforeseeable event causes a student who
has completed all the coursework to date to be unable to complete a small portion of the work in the last
week or two of the semester (typically the final project or exam). Incompletes will not be awarded for
foreseeable events including a heavy course load or a poorer-than- expected performance. Verifiable
documentation must be provided for the incomplete to be granted.

Tentative Schedule (Subject to Change)

Date Topics/Notes
8/22 – 8/26 Computer Basics, Numerical Representation

8/29 – 9/2 Intro to Basic Python

9/7– 9/12 Booleans, Conditionals, Selection Statements
9/14 – 9/26 Repetition
9/28 – 10/10 Basic Strings

10/12 Concepts Exam #1
10/13 Programming Exam #1 in WRT 112
10/14 – 10/17 File Basics

10/19 – 10/24 Functions
10/26 – 11/4 Basic Lists
11/7 –11/11 Dictionaries

11/14 – 12/2 Sets, Searching & Sorting Algorithms
12/8 Programming Exam #2 in WRT 112
See registrar link For your specific final date and time, please consult the registrar’s

final calendar at: https://registrar.uni.edu/calendars/final-
examination-schedule

Computing Environment

The following labs have pre-configured software for this class:

• Wright 110 & 112 – This is where you will meet for your lab sessions. This is a public lab part of the

week but it also used by other classes at other times of the day/week and may not always be available. It
generally closes at 5pm on weekdays.

• Wright 339 – This lab is open the latest on weekdays (until 9:00pm or so).
• EBAR 19 – This is a small general purpose lounge available to students in the CS department. This is a

good place to get a quick printout or check your email between classes. It generally closes at 5pm on
weekdays (or when the last faculty member leaves).

Working on your own laptop/computer: You are actually encouraged to work on your own laptop or
computer. Having your own computer will greatly aid you in the computer science major, and the
computer/laptop itself does not have to be very expensive. The class software is free and will work with
Windows, OSX, and Linux. Python and IDLE are easily downloaded from www.python.org. You should
download the latest edition of version 3 (NOT version 2).
Whether you work in the labs or from home, you will need to have Internet access to submit your assignments.

Scholastic Conduct

Since cheating definitions and academic ethics policies are often written for other types of classes, you
might tend to wonder how those translate to a computer science course. You may be surprised to hear there
are many ways to write a program to solve a specific problem. This is very similar to how there are many
different ways to write an essay addressing a particular topic. After a certain point in the course, I will be
using plagiarism-detection software to detect similarities that are very unlikely to occur if students were
working alone.

Additionally, you need to cite your source if you seek and use help found on the Internet (much like citing a
source in an essay course). To do this, you need to put the URL and a brief description of the help you
found in a comment directly above the affected block of code. I will show you how this is done further

https://registrar.uni.edu/calendars/final-examination-schedule
https://registrar.uni.edu/calendars/final-examination-schedule
http://www.python.org/

along in the class. However, if you do use code from the Internet, I reserve the right to ask you how it
works line-by-line. If you cannot explain it to me, I will not give you credit for that part of the assignment.
In other words, if you use help or code found on the Internet, you must cite it and fully understand it. It is
usually better to try to figure things out on your own than to use something you don’t understand.

In this class, homework assignments must be done on your own as your own individual work. However,
this does not mean that you cannot ask for help. Here are some general guidelines for keeping out of
trouble.

If you are seeking help from a classmate:
• DO NOT ask to see their code or look at their code.
• DO explain your thought process and where you are stuck in words.
• DO draw diagrams on the board.

If you are helping another classmate:
• DO NOT show them your code.
• DO NOT directly modify their code.
• DO try to help them in words, similar examples from lectures and labs, and diagrams.

Finally:
• DO NOT copy code from the Internet without citations. If you do copy code from the Internet

without citations, it is considered cheating and at least a Level One violation of the UNI
Academic Ethics Policy. This includes “tutoring” websites like Chegg. (If your citation(s) cover
more than just a few lines of code, be prepared to meet with me to explain each line verbally to
me.)

If I suspect a case of plagiarism or cheating, I will notify the student via email and allow the student to
come in and explain what happened. If I determine that plagiarism or cheating has taken place, the
following possible sanctions will occur (in accordance with UNI Academics Ethics Policies found at
http://www.uni.edu/policies/301). The following list does not list all possible academic ethics violations,
and it is your responsibility to be familiar with the full list (again, http://www.uni.edu/policies/301).

Remember: Discussing assignments is good. Copying code or answers is not.

http://www.uni.edu/policies/301
http://www.uni.edu/policies/301

	UNI CS 1510 (Fall 2022) Introduction to Computing, Sections 01–06
	Course Syllabus
	Course Information
	Course Name and Number
	CS 1510 Introduction to Computing
	Meeting Times
	Lecture (Sections 01-03): MWF 9:00am–9:50am Wright 109
	Lecture (Sections 04-06): MWF 10:00am–10:50am Wright 010
	Lab (Sections 01, 04): Th 8:00am–9:50am Wright 112
	Lab (Sections 02, 05): Th 10:00am–11:50am Wright 112
	Lab (Sections 03, 06): Th 3:30pm–5:20pm Wright 112
	Contact Information
	Course Learning Outcomes
	Performance Evaluation
	Grade Determination
	Class Attendance and Participation
	ZyBook Participation and Challenge Activities
	Your textbook is an interactive online textbook. You will be graded for completing participation activities before class on the day they are assigned. Again, participation activities are due before class. Challenge activities are not graded. They ...
	In-lab work
	Programming Assignments
	Exams
	Incompletes
	Tentative Schedule (Subject to Change)
	Computing Environment
	Scholastic Conduct

