
Lab 0 – Operating Systems Name(s) ______________________________________

The purpose of this lab is to get you familiar with the Linux and basic C Systems Programming with Linux.
This lab can be completed alone or with a partner. The purpose of this lab is to prepare you to be able
to do Project 0. This lab is worth 5% of your class score. The lab itself is worth 15 points.

Part A – Transferring, Compiling, and Running a C Program on a Linux Server (5 points)

Please watch the short Videos 1, 2, and 3 on the class Operating Systems “Resources” page and follow
along with your own laptops/machines.

Please initial below when you have watched these videos and successfully logged onto the Linux server,
transferred a file to the server, compiled a C program, and ran a C program. Let me know if you have
any questions on this process before moving on.

Initials ___________________

Part B – Getting Familiar with C (10 points)

We are going to learn the basics of C for this class. I recognize that some of you are more familiar with C
and/or Linux than others. If you are more experienced and finish the lab quickly, you can take some
time to further hone your skills by completing some extra credit activities listed on the main course
website.

Let’s use a nice interactive website source to learn C basics. You will be able to look at materials and try
coding solutions entirely in this webpage. However, any of the code you try in this tutorial will also work
if you copy it to the Linux server, compile, and run it there.

Open up a web browser and go to http://www.learn-c.org/. Your ads may vary. (They are a free
resource, so they need to make money.) Click on the “Hello, World!” link to start that module.

Once you start each module under “Learn the Basics”, you will be able to read information about that C
topic. Then you’ll complete the exercise at the bottom of the page in the black code areas. The “Run”
button runs the code. “Reset” works to reset the code, and “Solution” will show you the solution if you
are stuck.

http://www.learn-c.org/

Module #1: Hello, World!

Click on the “Hello, World!” exercise link and read through the text. Notice that as you read through the
text, you’ll see code examples. Under each code example is a green button “Execute Code”. Depending
on the situation, this button might not be very useful, because it tries to run the little snippet of code. If
the little snippet of code isn’t a full program, you will just see a syntax error. In the figure below, clicking
the “Execute Code” button won’t run a very interesting program, because this line only includes (brings
in) a library, but no code actually runs. If it looks like a full program, though, feel free to click the button
to see what happens!

Answer the following questions:

1. What is the name of the function used to print things to the screen?

2. When returning the number 0, what does that signify?

After you’ve finished reading through the module text, click on the green “Start Exercise” button and
complete the exercise at the end of the page.

Clicking that button will expand the exercise directions. Edit directly in the black code area. Once you
think you have the solution, click the “Run” button to check it. (Hint, click the blue “Solution” button if
you get stuck.) Otherwise, raise your hands for help. Once you have it correct, this window will pop up:

If you understand the solution, initial here. Then click OK to move to the next chapter.

Initials ___________________

Module #2: Variables and Types

C is different than Python (but similar to Java) in that you can’t just use a variable without defining it.
That means we have to list the variable name and its type (like int or float) to let our compiler know that
we plan to use those variables. This section will give us practice with that.

When we print, we also use placeholders to allow us to print variables. Here is a table of common
placeholders used:

Placeholder Type of variable
%d or %i Integer
%f Float
%c Character (not a string, just a single character)
%s String

Please read through the Variables and Types instructional material.

Click on the green “Start Exercise” button and complete the exercise. If you understand the solution,
initial here. Otherwise, raise your hands for help. Once you have it correct, click OK to move to the next
chapter.

Initials ___________________

Module #3: Arrays

Arrays are similar to lists in Python in that they hold multiple elements, but unlike Python, each element
has to be of the same type. Therefore, if you want an array (list) of integers, you would need to define
the array before you start to use it. Unlike Python, you also have to know the size of the array ahead of
time when you define it. (In systems programming, it is very important to know exactly how much
memory we are going to use before we use it.) However, just like Python, we use indexes to access
different locations in the array.

Please read through the Arrays instructional material.

Click on the green “Start Exercise” button and complete the exercise. (The blue Solution button does
not seem to work for this lab, unfortunately.) If you understand the solution, initial here. Otherwise,
raise your hands for help. Once you have it correct, click OK.

Initials ___________________

[STOP!] Note: The text takes you to multidimensional arrays here, but I would rather you not do that
quite yet! Go back to the main webpage: www.learn-c.org. Click on the Conditions link. We’ll come
back to multidimensional arrays, don’t worry.

Module #4: Conditions

Conditional statements in C are similar to those in Python, but instead of using tabs to define the
condition suite, we use curly braces { and }.

 Please read through the Conditions instructional material and answer the following questions:

3. Instead of using the words “and” and “or” for compound Boolean statements, what symbols do we
use in C instead?

4. Are parenthesis necessary around the Boolean conditional statement? Yes or no?

Click on the green “Start Exercise” button and complete the exercise. If you understand the solution,
initial here. Otherwise, raise your hands for help. Once you have it correct, click OK. (Hint: Don’t forget
about \n for the newlines! C doesn’t add those automatically like Python.)

Initials ___________________

Module #5: Strings

Strings are a little bit more complicated in C than they are in Python. We cannot compare two strings
using ==, and we cannot concatenate two strings together using +. The reason is because of pointers.
However, we can use other specialized string functions to do comparisons or string concatenation.

Please read through the Strings instructional material and answer the following questions:

5. What function do we use to compare two strings (to see if they are equal)?

6. What function do we use to get the length of a string?

7. What function do we use to concatenate two strings (e.g. put two strings together)?

http://www.learn-c.org/

Click on the green “Start Exercise” button and complete the exercise. If you understand the solution,
initial here. Otherwise, raise your hands for help. Once you have it correct, click OK.

Initials _____________

Module #6: For Loops

The for loop notation looks very unlike Python, but it is pretty similar to Java. Just like with the if
statements, we need to put curly braces {} around what goes in the loop.

Please read through the Strings instructional material and answer the following questions:

Click on the green “Start Exercise” button and complete the exercise. If you understand the solution,
initial here. Otherwise, raise your hands for help. Once you have it correct, click OK.

Initials _____________

Module #7: While Loops

While loops in C are pretty similar to Python. We can also use the continue directive to continue on
with the next iteration of the loop, and we can use the break directive to stop and “break out of” the
loop to continue onto the rest of the code.

Please read through the Strings instructional material and answer the following questions:

Click on the green “Start Exercise” button and complete the exercise. (Hint: Don’t forget to increment
the variable i in the loop!) If you understand the solution, initial here. Otherwise, raise your hands for
help. Once you have it correct, click OK.

Initials _____________

Module #8: Functions

Please read through the Strings instructional material and answer the following questions:

8. What does it mean to create a function with the void keyword?

Click on the green “Start Exercise” button and complete the exercise.

(Hint: The directions for this exercise could use some improvement. Don’t print exactly “x is big”. Print
the variable “number” that is passed into the function instead of x.)

If you understand the solution, initial here. Otherwise, raise your hands for help. Once you have it
correct, click OK.

Initials _____________

Module #9: Static

Please read through the Static instructional material. (Clicking the Execute Code buttons in this reading
is pretty useful to see what’s going on.)

Click on the green “Start Exercise” button and complete the exercise. If you understand the solution,
initial here. Otherwise, raise your hands for help. Once you have it correct, click OK.

Initials _____________

Module #10: Multidimensional Arrays

Ok, now let’s go back to the home page and go back to multidimensional arrays. Now that we’ve seen
for loops in C, the exercise will make sense.

In Python, we’ve seen multidimensional arrays when we talk about lists of lists. Indexing into a C
multidimensional array works just the same—index going left to right.

An multidimensional array defined like this in C is just 3 arrays of 4 elements each:

int a[3][4] = {

 {0, 1, 2, 3} , /* initializers for row indexed by 0 */

 {4, 5, 6, 7} , /* initializers for row indexed by 1 */

 {8, 9, 10, 11} /* initializers for row indexed by 2 */

};

It looks like this in Python:

a = [[0, 1, 2, 3], [4, 5, 6, 7], [8, 9, 10, 11]]

If we used some line breaks in Python, it looks a little more like the C example:

a = [[0, 1, 2, 3],

 [4, 5, 6, 7],

 [8, 9, 10, 11]]

Please read through the Multidimensional Arrays instructional material.

Click on the green “Start Exercise” button and complete the exercise. If you understand the solution,
initial here. Otherwise, raise your hands for help.

Initials ___________________

Module #11: Pointers

This is the only module I need you to complete in the “Advanced” section. We won’t need to do a lot
with pointers in this class, but they do show up periodically. All they are is just a memory address
number (pointer) to where your string, array, or object (struct) is stored. Pointers are usually
represented as an integer or a long integer in the system.

To understand the basics about pointers, we need to understand and use the * and & symbols.

Please go back to the home page, click on the Pointers link, and read through the Pointers instructional
material and answer the following questions:

Click on the green “Start Exercise” button and complete the exercise. (Don’t feel bad if you need to
check out the blue “Solutions” button here.) If you understand the solution, initial here. Otherwise,
raise your hands for help.

Initials _____________

Congratulations! You are done with the lab! Please remember to turn this lab in to Dr. Diesburg to get
your lab points. Now you can get started on Project 0, which must be completed individually.

