
UNI CS 3430, Section 1
Operating Systems

Project 1 - Implementing a Shell (worth 60pts)

Half-way turn in date (Parts 1-2 completed, Part 3 attempted): 2/5
Final submission (All parts completed): 2/14
__

Language Restrictions: C only
Additional Restrictions: The system() system call may not be used.

Purpose

The purpose of this project is to familiarize you with the mechanics of process control through the
implementation of a shell user interface. This includes the relationship between child and parent
processes, the steps needed to create a new process, shell variables, and an introduction to user-
input parsing and verification.

You may work in a group of two for this project. You must implement your shell on the class
Linux server (reachable through address student.cs.uni.edu). Your project will be tested on the
Linux server.

Grading

The entire project grade is worth 12% of your class grade (60/500 total class points). At the half-
way turn-in date, you should have parts 1-2 completed and part 3 attempted. The half-way turn in
is graded on effort and worth 1/3 (20 points) of your project grade. The final submission should
have everything working and is graded on the correctness of your solution worth 2/3 (40 points)
of your project grade.

Problem Statement

Design and implement a basic shell interface that supports the execution of other programs and a
series of built-in functions, as specified below. The shell should be robust (e.g., it should not crash
under any circumstance beyond machine failure).

Part 0: General Shell Structure

The shell (command line) is just a program that continually asks for user input, perhaps does
something on the user’s behalf, resets itself, and again asks for user input. Here is an example:

while(1)
{
 */ Get user input */
 */ Exit? */
 */ Do something with input */
}

Part 1: The Prompt

At this point, the prompt should indicate that the shell is ready to accept input from the user.
Often times, it also shows useful information, such as the name of the user running the shell and
the current directory. For now, you just need to implement a simple prompt.

• The prompt should look like the following:
o prompt$

• There should be a space after the dollar sign so that the user input does not visually run into
the prompt.

Part 2: Command Line Parsing

Before the shell can begin executing commands, it needs to extract the command name and the
arguments into “tokens”. It might be nice to store these tokens into an array so that you can then
parse each one in order. In our shell, the first token will always be the name of the program we
wish to execute, and all remaining tokens (perhaps including the first token) will be arguments to
that program. The function strtok() will be helpful to do this, but it is a bit tricky to use. Be sure
to look at the class notes.

Take note of the following assumptions:

• No leading whitespace
• One space separates the command line tokens.
• No trailing whitespace
• You can assume that each token is no longer than 80 characters.
• You can assume that a command will have at most 10 space-separated tokens

Make sure that you can successfully print out your array of tokens through different iterations of
your shell loop before moving on. If you see garbage in any of your commands or arguments, try
using the C library call memset() or bzero() to clear out your input string and token array before
and/or after you are done using them.

The C library call fgets() can gather user input from the screen and save it into a string (C character
array). See the man pages for strtok, fgets, memset, or bzero for more information.

Part 3: Command Execution

Once the shell understands what commands to execute it is time to implement the execution of
simple commands. Since the execution of another program involves creating another process, you
will have to use the fork() system call to create another process. Once you have created the new
child process, that process must use the execvp() system call to execute the program. Finally, the
parent (shell) process must wait for the child process to complete before releasing the child’s
resources using the waitpid() system call.

However, the execvp() system call may return if there is an error. If it does, your shell should print
an error, reset, and prompt for new input. Here is an example:

prompt$ lalala -a
Error: Command could not be executed
prompt$

Part 4: Built-ins

Not all commands are actually programs, and your shell must implement two “built-in” commands.
In other words, if you encounter any of these two commands, do not execute them using fork(),
exec(), and waitpid(). Instead, your shell should call a subroutine that implements the following
functionality.:

• exit – terminates your running shell process and prints 'exit'.

prompt$ exit
exit
(shell exits)

• cd [PATH] – Changes the present working directory. You will need to use the chdir()

system call and update the PWD environmental variable with setenv().

prompt$ pwd
/user/diesburg/os/project1
prompt$ cd ..
prompt$ pwd
/user/diesburg/os
prompt$ cd project1
prompt$ pwd
/usr/diesburg/os/project1

• showpid – shows the last 5 child process IDs created by your shell.

 prompt$ showpid
 4987

 4992
 5001
 5002
 5004

• lc – (last command) automatically executes last command. For example, if my last
command was ‘cowsay hi’, then typing lc should run ‘cowsay hi’:

prompt$ lc

< hi >

 \ ^__^
 \ (oo)_______
 (__)\)\/\
 ||----w |
 || ||

Note: Typing lc again should once again give me the same command as before (resulting
in a second cow).

Part 5 (Extra Credit) : Better Prompt

Let’s make your shell more usable.

• Modify the prompt so that it displays the current working directory before the $ sign:

o /home/xkcd/$
• Make the prompt a different color. Optionally, you can make other parts of your shell

different colors as well.

Create a README file

Please create a README text file that contains the following:

• The names of all the members in your group
• A listing of all files/directories in your submission and a brief description of each
• Instructions for compiling your programs
• Instructions for running your programs/scripts
• Any challenges you encountered along the way
• Any sources you used to help you write your programs/scripts

Halfway Grading Rubric (out of 20 points)

Requirement Points Possible Points Earned

Prints prompt 5

Accepts input 5

Breaks input into tokens (words) 5

Attempts to execute command
Note: I am looking for a decent attempt at
fork/execvp/waitpid. If you can’t get it to work,
include what you tried but commented out so that
the code still compiles.

5

Final Grading Rubric (out of 40 points)

Requirement Points Possible Points Earned

Command parsing 5

No zombies (correct use of waitpid) 5

Executes any External Command 5

Uses fork correctly

5

Built-in: cd 5

Built-in: list

5

Built-in: last

5

README 5

Part 5: prompt shows current working
directory and is a different color

+5

If the program does not compile, I will assign a zero to your submission grade.

Academic Integrity

All work turned in by you must be your own. This means

• Do not use project code found on the Internet.
• Do not use other group’s code.
• Do not share your code with other groups.
• Do not have someone else write your code.

I have a database of similar previous student work and similar Internet solutions. I also automatically
run a plagiarism checker against similar work and other submissions in the current class. If I find that
you have misrepresented other work as your own, you will receive a grade of 0 for this project and
optionally a letter to the Provost to go on your academic record.

Project Submission

Both the C code file and the README text file should be turned in for both the half-way and final
submission dates. Navigate to the class eLearning page and click on the Project Submission link on the
left. Follow the links to submit your C code file and README file separately.

Half-way submissions cannot be late. Final submissions can be up to two days late, but note the penalty
on the syllabus for every day late.

	UNI CS 3430, Section 1 Operating Systems
	Project 1 - Implementing a Shell (worth 60pts)
	Half-way turn in date (Parts 1-2 completed, Part 3 attempted): 2/5
	Final submission (All parts completed): 2/14
	 lc – (last command) automatically executes last command. For example, if my last command was ‘cowsay hi’, then typing lc should run ‘cowsay hi’:
	prompt$ lc

	< hi >

	\ ^__^
	\ (oo)_______
	(__)\)\/\
	||----w |
	|| ||
	Note: Typing lc again should once again give me the same command as before (resulting in a second cow).
	Part 5 (Extra Credit) : Better Prompt
	Let’s make your shell more usable.
	Create a README file
	Halfway Grading Rubric (out of 20 points)
	Final Grading Rubric (out of 40 points)
	Academic Integrity
	Project Submission

