
GFE Example: VB for Non-CS Students
J. Philip East, philip.east@uni.edu

(Developed for a GFE workshop with Andy Bern & Ben Schafer)

This document describes a possible 1 , partial 2 sample of applying Grading For Equity (GFE)
principles to a course for non-majors in Visual Basic Programming. The general goal of the
course was to provide students sufficient programming capability to write a program to solve a
problem from their personal lives/contexts if they chose to (and, thus, to make it more likely they
might choose to). We 3 determined that our 3-credit course should focus on problems rather
than the language features course often taught to CS majors. Please keep in mind that this is
not meant to be prescriptive and that there are almost certainly alternatives embodying GFE
that would work as well or better than those identified.

Course Outcomes
We believe outcomes are capabilities, not knowledge. Knowledge alone is trivia--it becomes
useful or important only when it is put to use. Knowledge is a means to an end, not an end in
itself. Outcomes need to be stated in terms of what the learner will be able to do in relation to a
course related task. For this course those are programming related tasks.

We worked backwards from the general course goal to develop the more specific course
outcomes. We decided that developing student capabilities for that goal would require a course
project after students had learned to use the programming IDE and the basics of programming.
We also thought that many problems students might encounter would involve files. The general
course outcome was that

Students should be able to produce a program whose solution required the use of the
basics of programming, data collections, and files.

We had the perspective that those basics required knowing the actions computers can carry out
and ways the actions can be organized into programs. Additionally, we thought it important to
present all coding activities in a problem-centric context. The course outcomes are provided
below.

● Programming Basics
● System Utilization. Use the Visual Basic IDE to create and test a program and

submit the program to the instructor.
● Basic Actions. Given the description of an IPO (input, process, output)

problem, develop, test, and submit a program solution for various types of data

1 The general structure described here is from an actual course but it was taught before GFE was discovered. The
description is, therefore, a modification of what was actually done. The grading scheme is also “based on a true story”
but is a actual reflection of what was done..
2 Most of the desired course outcomes are included but only a subset of assessments and learning activities are
provided in an effort to illustrate possibilities,
3 Stephen Hughes and J. Philip East. The original course grew out of Stephen’s idea of presenting a set
of problems on the first day of class and saying that by the end of the course, students should be able to
solve any of them. See http://www.cs.uni.edu/~east/PcPI/problemList_2.0.php for more information.

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

mailto:philip.east@uni.edu
http://www.cs.uni.edu/~east/PcPI/problemList_2.0.php

(numeric, string & control property) of various kinds (constants, literals, variables
& common functions).
Several components of this outcome were identified.

● Boolean Expressions. Given a description of the need for a Boolean
expression, provide a Boolean expression to achieve the goal.
We felt that numeric expressions were familiar to students and that string
expressions were a relatively natural extension. However, we also felt Boolean
expressions were less familiar and they required knowledge of numeric and
string expressions. Thus, we had a separate unit/outcome involving conditionals.

● Selection. Provide two or more alternatives for selection (if) statements to
achieve a desired result.
Providing alternative codings is thought to deepen student understanding of the
relationship between the conditional expression and the control structure of the
selection statement and how simpler conditionals can be used with more
complicated control structures and vice versa. It should also enhance student
problem solving.

● Repetition. Provide two or more alternative solutions for problems requiring
repetition.

● Putting It All Together. Write a short program (one page or so) for a task using data (a
data collection to or from file), actions (input, assignment, built-in functions & output),
and control structures (sequence, selection & repetition).

● Project. Identify a problem requiring all key course elements (sequence, selection,
repetition, modularization, and file usage) then plan, develop, implement, and evaluate a
program to solve the problem.

Learning Activities & Assessments
Identifying course outcomes and developing learning activities and assessments is not a linear
process. Outcomes must be assessed and some outcome candidates are not amenable to
assessment as worded. Learning activity (lecture, demonstration, homework, etc.) is needed
but sometimes it is difficult to imagine how some outcomes (as worded) might be taught and
practiced. There was much revisiting of the statements of outcomes, assessments for them,
and the planned learning activity--the outcomes above and assessments and learning activities
below did not initially have the form they do now.

Programming Basics
We wanted to provide a great deal of practice activity to develop the desired capability. We also
wanted to use something akin to mastery learning in grading but we didn’t like the term
“mastery” feeling it implied a deeper capability than we were expecting. We settled on the term
“competency”. We had begun using two of the GFE practices prior to encountering GFE--not
“grading” homework and allowing retakes of assessments. For each unit we would perform

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

in-class demonstrations, provide large homework sets with answer keys, and use additional
class time for questions and feedback. Assessment would be in the form of competency
demonstrations, essentially 20-minute quizzes, that could be graded quickly. Each competency
demo had three possible marks--competency demonstrated, competency not demonstrated,
and uncertain. For the uncertain cases, we asked students to come meet with us to discuss
their performance.

The competency demos had several parts. Some addressed component elements of the
capability and an overall capability. Briefy, they were:

● System Utilization.
● Basic Actions.

○ Indicate outcome of expressions (various data types & kinds).
○ Produce expressions for indicated tasks (various data types & kinds).
○ Trace code for a small IPO problem identifying the resulting value(s).
○ Identify the general purpose of code for a small IPO problem.
○ Produce code to solve a small IPO problem (various data types & kinds)

● Boolean expressions.
○ Indicate value of given Boolean expressions for indicated values for variables.
○ Produce assignments statements to save the value of a Boolean expression.
○ Generate Boolean expressions for given tasks in varying contexts (assignment,

output, in if statements
○ Describe the general outcome or result from a given Boolean expression (e.g.,

always true, always false, indicates a grade of B, etc.)
● Selection.

○ Indicate the result of (perhaps nested) if-then-else statements assuming
indicated values for variables involved

○ Given selection statements to accomplish a given task, provide an alternative
that achieves the same result--compound Boolean conditionals versus nested
if-then-else statements (e.g., leap-year determination), independent if statements
versus case-like if statements (e.g., grade determination), etc.

○ Produce if statements involving various types and kinds of data to accomplish
various kinds of tasks (set variables or properties, report, set Boolean flags, etc.)

● Repetition.
○ Trace repetitive code using either counting or indefinite loops to indicate the

result of execution.
○ General understanding, e.g., Discuss similarities and differences of counting and

indefinite loops; Choose between counting and indefinite loops for a given task
and explain the choice; Convert between counting and indefinite loops.

○ Provide code to accomplish a repetitive task
Sample competency demos can be seen at

http://www.cs.uni.edu/~east/GFE/sampleCompetencyDemos_VB/ .

The overall grade for the competency demos would be one of five categories--woefully
inadequate, marginal, okay, good, or excellent (I, M O, G, E).

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

http://www.cs.uni.edu/~east/GFE/sampleCompetencyDemos_VB/

Project
The project is worked on over a number of weeks, perhaps a third or more of the course. Some
class time is used for additional programming feature discussion. During the last two or three
weeks of the course, much class time would be spent working on the projects. The project
serves multiple instructional purposes. It would provide students with the experience of
identifying a problem of their own for which a program would be useful, hopefully enhancing the
possibility that they would actually apply programming to problems in the future. We would use
the project activity to show the process for program planning and development. The
programming would provide a learning activity for putting all the programming pieces together to
write a relatively simple program enhancing student confidence in their ability. Initially, the
projects were done by individual students but in later courses they could be done individually in
groups. Assessment in those cases would need to differ to be true to GFE.

The instructional activity for projects could be class discussion of the assignment--its goals and
the process--and of exemplars from previous classes (or the instructor) and eventually
class-time work on the projects. Various project submissions would be discussed in person with
each student (or group) to provide feedback about the project, e.g., too involved/large, too
small/easy, recommended modifications, suggestions about programming element use, etc. If
desired individual students could resubmit for a second assessment and in some cases a third.
Anticipated project submission elements and assessment criteria follow.

● Project Identification and Planning
Each student or group would produce and submit a plan consisting of the elements
described below. For individuals working in a group each would produce a draft of the
plan that the group would consider and use in developing the group plan.

○ Identify the project and its general goals/behavior . Was sufficient detail
provided to give an accurate understanding of what would happen?.

○ Indicate how the project will incorporate expected programming features .
Were selection, repetition, modularization, and file usage all addressed and their
use as described reasonable?

○ Provide a general algorithm for the top level (or two) of the program. Was
the algorithm readily understandable? Was it complete? Was it close to being
able to accomplish the described goals/behavior?

Each element of the submission would be assessed using the 5-category scale identified
above--I, M O, G, E. Care would be taken to assess ideas rather than their presentation
as writing is not a course goal. An overall mark would be based on the three individual
marks:

● E . Three Es,
● G . All Gs and Es; or one each of O, G & E.
● O . All Os, Gs & Es; or at most one M with an offsetting G or E.
● M . All Ms; or at most one I with an offsetting O or above.
● I . Does not meet any criteria above.

For individuals working in groups, group products would be assessed but not count in
individual grades. Individuals would receive a draft on their draft of the plan. Individuals

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

and groups would meet with the instructor for project plan feedback. Submitted plans
could be revised by individuals as a retake..

● Project Report
Individual students will submit a report evaluating various aspects of the completed
project as indicated below. The report can be revised and submitted for a retake.

○ Project Assessment . A self-assessment of the first three elements in “Project
Implementation” above identifying any deficiencies.

○ Project Alternatives . Ideas for changes in the project, i.e., additional
functionality, changes in existing functionality, changes in program
implementation (code), etc.

○ Personal Understanding . An identification of the various functional parts of the
submitted program and a self-assessment of student capability/understanding
with respect to them. (Groups members indicate the parts they did or worked
on.)

The project implementation would be assessed (as discussed below) and used to inform
this assessment. Each element would be assessed somewhat differently but using the
course standard 5-category scale--I, M O, G, E They would be examined for
completeness and appropriateness, e.g., alternatives are reasonable, assessment
matches reality, etc. Care would be taken to assess ideas rather than their presentation
as writing is not a course goal. An overall grade would be based on the three individual
marks:

● E . Three Es or two Es and one G.
● G . All Gs and Es; or one each of O, G & E.
● O . All Os, Gs & Es and at most one M with an offsetting G or E.
● M . All Ms or above with at most one I.
● I . Does not meet any criteria above.

● Project Implementation and Student Understanding
Project code and a readme file indicating how to use it would be submitted and an
appointment for each individual student scheduled with the instructor. Prior to the
appointment, the program would be assessed and a plan for assessing student
understanding of the code made. When meeting with the instructor the student would
discuss/explain the code and respond to questions from the instructor. There is no
opportunity for a retake on the project. The grading elements would be:

○ Programming feature use . Does the program use all the expected
programming elements? Are they used appropriately? Are there few or no
instances of features not used when they should have been (and instruction was
timely and adequate)?

○ Program correctness . Did the program run as described in the readme file?
Does it run without crashing? Does the program produce correct results or
behavior?

○ Requirements met . Does the program do what was originally planned (or as
revised)?

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

○ Code understanding . Can the student explain selected elements of the
program and discuss choices and alternatives?

Each element would be assessed as to how well it met expectations. The student would
respond to questions from the instructor as to program operation. The course standard
5-category scale would be used to indicate the degree to which expectations were met.
The code understanding is considered more important that other elements as indicated
by the overall mark based on the five individual marks:

○ E . An E on code understanding with the rest Es and Gs.
○ G . An E or G on code understanding with the rest Gs or Es with at most one O.
○ O . An O or above on code understanding with at most one M offset by a G or

above, no mark of I).
○ M . All Ms or above and at most one I.
○ I . Does not meet any criteria above.

The overall project grade would consider the three project product assessments equally with
result shown below:

● E . All Es & Gs with more Es than Gs.
● G . All Gs or Es with at most one O.
● O . All Os or above except for one M.
● M . All Ms or above and at most one I.
● I . Does not meet any criteria above.

Putting It All Together
This assessment is essentially a final exam. In addition to assessing the students it is used as
the primary course assessment instrument. Due to time constraints there is no opportunity for a
retake. The final has two parts. The first is the 10-item quiz adapted from the benchmark exam
of Simon et al 4 . The second is the coding of a relatively short program. that requires: selection,
repetition, file usage, and an indexed data collection.

Benchmark
The benchmark exam has 10 questions. We divided them into three groups--four multiple
choice (MC), three code tracing (CT), and three supply code (SC). Each would be marked as
correct or incorrect. Using the course standard 5-category scale resulting grades would be on
the number of items in each group that were correct, i.e.,:

● E . Three SC items & five of the other seven, or two SC items & six of the other seven.
● G . Two SC items and at least five of the other seven, or one SC item correct and all the

other seven.
● O . At least one SC item and four of the other seven, or no SC item and all the other

seven.

4 Simon, Sheard, J., D’Souza, D, Klemperer, P., Porter, L. Sorva, J., Stegeman, M. & Zingaro, D. Benchmarking
Introductory Programming Exams: Some Preliminary Results. ICER'16 , September 8-12, 2016, Melbourne, Vic,
Australia.

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

● M . At least four of the seven non-SC items.
● I . Does not meet any criteria above.

Programming Problem
The relatively short program would require: selection, repetition, file usage, and the use of an
indexed data collection. Resulting code is assessed for semantics, not syntax. The general
expectations are:

● File-related
○ File is properly opened and closed
○ Code for reading from and writing to the file is located appropriately (e.g., within

repetition)
● Selection

○ Correct Boolean expression used
○ Appropriate selection structure used (if-then vs if-then-else vs ...)
○ Appropriate action(s) taken for each outcome

● Repetition
○ Correct continuation/halting condition
○ Appropriate actions repeated

● Sequencing actions
○ Appropriate actions taken before and after repetition
○ Correct sequence of actions performed within repetition--before, inside all blocks,

and after selection
● Correct non-trivial use of an index into the collection

Each aspect of the code would be assessed as one of three possibilities--correct, close, or
marginal. A 5-category grade for the overall problem would be produced as follows:

● E . At least four correct and the other close.
● G . At least three correct and the other two close.
● O . At least one correct and three of the others close.
● M . At least three close.
● I . Does not meet any criteria above.

Overall Grade For The Final
The grade on the putting-it-all-together assessment would combine the two parts as follows:

● E . Both Es.
● G . Both Es or Gs.
● O . Both Os or above.
● M . Both Ms or above; or one G or above and an I.
● I . Does not meet any criteria above.

Overall Grading Scheme
The overall grade would be determined by combining the three elements--programming basics,
project, and putting it all together--as follows:

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

● E . All Es; or two Es & a G.
● G . All Gs or above; or E, G, & O.
● O . All Os or above; or at most one M offset by a G or E.
● M . All Ms or above, or at most one I offset by a G or E.
● I . Does not meet any criteria above.

The overall mark would translate directly into the A, B, C, D, F approach. Note that averaging is
not used. One result of this is that an inadequate or “failing” mark will prohibit a final grade of C
(that we think of as “okay” work).

Comments and Caveats
We believe this document provides an example of what might result from working to convert
course from traditional grading practices to one that applies the tenets of Grading For Equity.
Please note that the above suggestions have never been used in an actual class. They should
be considered a possible starting point. They are meant to be descriptive of something that
might be used, not prescriptive of anything.

Questions, comments, and discussion can be sent to Philip East (philip.east@uni.edu).

GFE Example: VB for Non-CS Students by J. Philip East is licensed under Attribution-NonCommercial-ShareAlike 4.0
International. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/4.0/

mailto:philip.east@uni.edu

