
A REVIEW OF STUDIO-BASED LEARNING IN COMPUTER

SCIENCE*

Adam S. Carter and Christopher D. Hundhausen
Human-centered Environments for Learning and Programming (HELP) Lab

School of Electrical Engineering and Computer Science
Washington State University

Pullman, WA 99164-2752 USA
{cartera, hundhaus}@wsu.edu

ABSTRACT

Studio-based learning (SBL), a pedagogical technique that promotes learning
through the iterative construction and review of problem solutions, is
becoming increasingly popular in computer science education. This paper
reviews the use of SBL in computing education with respect to the ways in
which it has been implemented, its impact on the curriculum, and the
educational outcomes it has promoted.

INTRODUCTION

The notion of studio-based learning in formal educational settings has been around
for almost a century, dating back at least to the Bauhaus School of Design [1]. One of
the best philosophical discussions of the impact and importance of SBL can be found in
Donald Schon's classic book The Reflective Practitioner [2]. There, Schon introduces the
idea of reflection in action, the idea that experts often evaluate and critique their actions
as they take place. Through this process, experts "[carry] out an experiment which serves
to generate both a new understanding of the phenomenon and a change in the situation"
[2]. As discussed by Schon, this reflective process naturally takes place in the
architectural design studio.

In the SBL model observed and described by Schon, the instructor typically assigns
the class a design specification that students must then implement. Throughout the
project's lifecycle, the instructor holds periodic design reviews with each student. These
reviews follow a format that guide the student to think more deeply about their solution

 Copyright © 2011 by the Consortium for Computing Sciences in Colleges. Permission to copy*

without fee all or part of this material is granted provided that the copies are not made or
distributed for direct commercial advantage, the CCSC copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the
Consortium for Computing Sciences in Colleges. To copy otherwise, or to republish, requires a
fee and/or specific permission.

105

JCSC 27, 1 (October 2011)

and the problem at large. From this reflection, students gain a better understanding of
both the immediate problem, and of architecture as a whole.

In addition to informal design discussions, students also participate in formalized
design "crits" where their designs are presented to other students, instructors, and outside
critics. Schon does not discuss the implications of these more formal critiques, but it is
presumed that these too have educational merit. From this description, we can identify
the following key characteristics of studio-based learning:

 • Classroom assignments should primarily be project-based.
 • Student work should be periodically evaluated both formally and informally through

design critiques.
 • Similarly, students should be required to engage in critiquing the work of others.
 • Design critiques should revolve around the artifacts typically created by the

discipline.

How do these broad characteristics apply to computer science? Computer science
has traditionally been taught as either a form of mathematics or engineering [3].
However, as noted by Docherty et al. [3], computer science is different from mathematics
and other engineering disciplines in that computer science is not a "tame" discipline.
Metrics of success and stopping criteria are often unclear. As such, correct solutions are
often developed and evaluated iteratively. Docherty et al. note that these unclear
characteristics of computer science are also shared by other design sciences (e.g.
architecture), and argue that computer science education should be similar to the
educational techniques used by these other design sciences.

Perhaps because of its similarities to other design sciences, we believe the SBL
model is readily adaptable to the computer science discipline. In many computer science
courses, classroom assignments are already project-based. Assignments are often
designed to introduce a given programming principle or encourage a new way of thinking
about a given topic. Furthermore, many colleges and universities make large capstone
projects a requirement for graduation. Even more encouraging is the fact that like
architecture, computer science generates its own set of design artifacts, including program
code, architectural diagrams, algorithm visualizations [4], and even correctness proofs.
As such, it is plausible that many of the same critiquing techniques discussed by Schon
[2] could also be applied to the artifacts generated by computer scientists.

 For computer science educators interested in integrating the SBL model into their
courses, perhaps the most important open question is that of how best to integrate
periodic reviews and critiques of computer science design artifacts into the curriculum.
To explore that general question, this paper surveys several initial attempts to integrate
SBL into the computer science curriculum. In so doing, we aim to address the following
more specific questions:

 1. What have been the motivations for implementing SBL in a particular course?
 2. How was SBL actually implemented in the classroom?
 3. How did researchers gauge the success or failure of their particular SBL

implementation?
 4. What general conclusions did the researchers draw?

106

CCSC: Northwestern Conference

EXPLORING STUDIO-BASED CURRICULUM IN COMPUTER SCIENCE

More than a dozen descriptions of the use of SBL in computer science courses have
appeared in the literature. This section describes implementations at five different
universities in terms of our exploratory questions. While we believe our review presents
a representative sample of SBL implementations, it is by no means an exhaustive review,
which is beyond the scope of this paper.

The University of Queensland, Australia

Researchers at the University of Queensland [3] noted several similarities between
computer science and design sciences like as architecture. From this observation, the
university developed the Bachelor of Information Environments degree, merging the
three previously separate "streams" of computer science, interaction design, and project
development into a studio-based curriculum. Each stream appears to be taught using
traditional methods (i.e. lecture); however, the subjects taught in all three converge in a
mandatory studio-based course. The studio courses revolve around the collaborative
creation and presentation of projects that relate to what is being taught in each of the three
streams. The effectiveness of the new degree program was assessed through attitudinal
surveys. No exact numbers were given, but the anecdotal examples given in the paper
suggest that students enjoyed the studio-based curriculum.

Monash University, Australia

Similar to the work done at the University of Queensland, Lynch et al. of Monash
University redesigned their Bachelor of Information Management and Systems (BIMS)
around the concept of SBL [1, 5]. The primary motivating factor for implementing a
SBL-based curriculum stemmed from the desire to better prepare students for jobs in
industry [5]. Lynch et al. noted that in addition to programming skills, employers are also
interested in an employee's ability to collaborate effectively with coworkers, a skill that
is often left untouched in traditional curriculum.

In redesigning the BIMS program, Lynch et al. [5] recognize that SBL needs to be
more than just a classroom teaching technique. Thinking larger, Lynch et al. argue that
SBL needs to be supported on three levels. First, the teaching space (physical layout of
the classroom) needs to be set up in a manner to support collaboration amongst students.
Most classrooms are designed for lectures, which make them difficult spaces for
facilitating group work. Second, the course needs to be taught using SBL techniques.
Lastly, coursework needs to be supported through a collaboration-oriented IT
infrastructure. In other words, students need the technical tools necessary to make
sharing work easy. The BIMS degree program addresses all three concerns. Classrooms
were redesigned, SBL was the dominant teaching technique, and the latest software-based
groupware was made available to the students.

SBL was implemented through a mandatory "studio" course to be taken alongside
other coursework that was presumably taught using more traditional pedagogies. Similar
to what was described by Schon [2], the main focus of the studio class was for groups of
students to generate portfolios of past work and achievements [5]. These portfolios were

107

JCSC 27, 1 (October 2011)

then presented to faculty and the general public. The work that goes into the portfolio
accounted for 80% of students' overall grades [1].

The success of the new BIMS program was assessed through informal student
interviews and a questionnaire. The informal interviews revealed that students enjoyed
interacting and collaborating with other students [5]. An analysis of the questionnaires
revealed that students preferred SBL over lecture, preferred working in groups, and
recognized that SBL further developed their knowledgebase and skill set. Students had
generally unfavorable marks for the portfolio, often indicating that they would prefer to
have had more concrete direction for its construction.

The University of Victoria, Canada

The University of Victoria took a more localized approach when integrating SBL
into computer science. Rather than undergoing a complete curriculum redesign, Estey
et al. [6] decided to implement SBL in just a single course on game design. Again, the
primary motivating factor for introducing SBL into the curriculum was to model industry
practices in the classroom. Researchers were most interested in promoting
communication and collaboration skills in particular.

Contrary to the University of Queensland and Monash University, lecture and SBL
were integrated into a single course. Students gained new information through lecture,
which was then reinforced with studio-based labs. Additionally, rather than plunging
students into a full-fledged studio-based experience, Estey et al. decided to gradually
introduce students to SBL practices. Introduction activities included writing a review for
a video game and debating the merits of Batman and Superman. The concept of gradual
introduction continued through the end of the first major programming project in which
students witnessed experts giving constructive critiques on group presentations. The
final, largest project fully integrated SBL into the learning process by making peer review
an essential component to every stage of the project.

The success of the game design program was assessed through student
questionnaires. As was the case with the other SBL programs discussed thus far, results
were very positive. Students indicated that studio-based techniques improved their sense
of community, developed motivation, and provided alternate ideas and views to consider.
Based on these results, Estey at al. plan to implement SBL in other courses while
performing additional analysis on its effectiveness.

Washington State University

Motivated that the observation that so-called "soft skills" (e.g., communication,
teamwork, collaboration) are increasingly coveted by the software profession, researchers
at Washington State University have focused extensively on the peer review aspect of
SBL. Borrowing from standard code inspection techniques used in industry, Hundhausen
et al. [7] explored the use of the pedagogical code review (PCR) in introductory
programming courses. In a PCR, students are assigned to review teams, which are led
by trained moderators (upper-division or graduate computer science students). Teams step
through each team member's code one line at a time, checking it against a standard list
of best coding practices.

108

CCSC: Northwestern Conference

In two separate studies, PCRs replaced three lab sessions in an introductory
computer science course [7, 8]. To measure the effectiveness of PCRs, Hundhausen et al.
investigated the effect that PCRs would have on a student's attitudes through a modified
version of the Motivated Strategies for Learning Questionnaire (MSLQ) and test
performance [8], as well as investigating the types of issues logged during a PCR [7].
Results indicated no significant differences in the test performance of students who
participated in PCRs and students who did not. However, two notable attitudinal
differences were measured. First, PCRs promoted an increase in attitudes toward peer
learning that approached significance. Second, Whereas self efficacy (a measure of
students' perceptions of their ability to program) decreased significantly among students
who did not participate in the PCRs, no such decrease was measured in students who
participated in PCRs.

Auburn University

Starting in 2007, Auburn University began integrating SBL into their CS2
curriculum [9, 10, 11]. Like the researchers at Washington State University, researchers
at Auburn are motivated by the observation that present pedagogical methods in computer
science fail to prepare students for jobs in the computing profession. Unlike other
universities, studio-based activities at Auburn occur both in and outside of class. As at
the University of Victoria, students present their work and critique the work of others
within a laboratory setting. Additionally, students must spend time outside of class by
visiting the course's website to review the work of other students. In these reviews, both
the author and reviewer are anonymous.

Researchers at Auburn have used multiple measures to gauge the effectiveness of
their SBL implementation. As at Washington State University, student attitudes were
captured using the MSLQ. Also, the quality of online student reviews was analyzed for
effectiveness. Finally, grade comparisons were made between the studio-based course
and one that was taught without SBL methods.

Results from the MSLQ indicate that SBL promoted significant gains in student
intrinsic motivation, extrinsic motivation, self-efficacy, peer learning, self-regulation, and
sense of community [9]. In addition, Myneni et al. [11] found that review quality was
quite poor at the beginning of the semester, but became more detailed as the semester
progressed. Myneni et al. believe that such gains show an improvement in students'
critical thinking skills. To compare the effectiveness between SBL and traditional
instruction, Hendrix et al. [9] compared scores on assignments, tests, and a minimum
skills test. They found a significant difference between assignment and test scores but
no significant difference on the minimum skills test. These results indicate that SBL does
a better overall job at instruction but both methods are sufficient at delivering the core
content.

CONCLUSION

Having presented a brief overview of SBL in computer science, we now reconsider
our original research questions.

109

JCSC 27, 1 (October 2011)

What Are The Motivations For Implementing SBL In A Particular Course?

Most researchers used SBL as a means both to reinvigorate a curriculum and to give
students exposure to industry practices. Only three of the universities surveyed
(Queensland, Washington State, and Auburn) believed there to be an overall deficiency
in computer science pedagogy. Researcher motivations did not appear to have an effect
on the particular ways in which SBL was implemented at each university.

How Was SBL Actually Implemented In The Classroom?

For all curriculum-based SBL, student interaction plays a critical role. Usually,
interaction was fostered through group presentations and/or peer review of assignments.
Also noteworthy is that SBL never replaced lecture. Instead, SBL was used to reinforce
lecture material. This seems to imply that researchers believe that SBL is appropriate for
reinforcing ideas already learned but not for introducing new ones. However, we wonder
whether it might be effective to reverse this by having lectures reinforce topics covered
in the SBL labs. In this scenario, lectures would use the studio experiences as motivation
for discussing a new topic or introducing new material. We believe this scenario warrants
further investigation.

How Did Researchers Gauge The Success or Failure Of Their Particular SBL
 Implementation?

The success of a particular SBL implementation was usually assessed through
end-of-term questionnaires completed by students. In general, students responded
favorably to studio-based activities. At only two universities (Washington State and
Auburn) did researchers compare their studio-based courses to the same courses taught
only with lecture. Both of these found that the studio-based versions of the course
produced measurable benefits, both in the form of higher homework and test scores
(Auburn only), and student attitudes (Washington State and Auburn). These results are
promising, but need to be followed up with additional comparisons at other universities
before SBL can claim superiority.

What General Conclusions Did The Researchers Draw?

Our review indicates that students nearly universally enjoy SBL. Further,
researchers and educators have a high opinion of SBL, and there seems to be a shared
interested in further investigating SBL.

This review highlights two deficiencies in the current literature than can be
expanded by future researchers. First, it is clear that the SBL space is in need of
additional comparative studies. Comparisons between SBL and other pedagogies will
allow us to better situate SBL in the context of computer science education. Investigating
key aspects of the SBL process, similar to the work done by Hundhausen et al. [7], will
provide us with insights on how to best maximize the benefits of SBL. Second, it is
worth exploring the interplay between lecture and SBL. All of the cited studies appear
to use SBL to reinforce lecture material. Yet, perhaps we would see larger improvements
if roles were reversed and SBL were used to drive class lectures.

110

CCSC: Northwestern Conference

REFERENCES

[1] Carbone, A., Sheard, J., A studio-based teaching and learning model in IT: what
do first year students think?, Proceedings of the 7 annual conference onth

Innovation and technology in computer science education, 213-217, 2002.

[2] Schon, D. A., The reflective practitioner, Basic Books, Inc., 1983.

[3] Docherty, M., Sutton, P., Brereton, M., Kaplan, S., An innovative design and
studio-based CS degree, SIGCSE Bull., 33 (1), 233-237, 2001.

[4] Hundhausen, C. D., Brown, J. L., Designing, Visualizing, and Discussing
Algorithms within a CS 1 Studio Experience: An Empirical Study, Computers &
Education, 50, 301-326, 2008.

[5] Lynch, K., Carbone, A., Arnott, D., Jamieson, P., A studio-based approach to
teaching information technology, Proceedings of the Seventh world conference
on computers in education: Australian topics - Volume 8, 75-79, 2002.

[6] Estey, A., Long, J., Gooch, B., Gooch, A. A., Investigating studio-based learning
in a course on game design, Proceedings of the Fifth International Conference
on the Foundations of Digital Games, 64-71, 2010.

[7] Hundhausen, C. D., Agrawal, A., Fairbrother, D., Trevisan, M., Integrating
pedagogical code reviews into a CS 1 Course: An Emperical Study, Proceedings
of the 40 ACM technical symposium on Computer science education, 291-295,th

2009.

[8] Hundhausen, C., Agrawal, A., Fairbrother, D., Trevisan, M., Does studio-based
instruction work in CS 1?: an empirical comparison with a traditional approach,
Proceedings of the 41 ACM technical symposium on Computer sciencest

education, 500-504, 2010.

[9] Hendrix, D., Myneni, L., Narayanan, H., Ross, M., Implementing studio-based
learning in CS2, Proceedings of the 41s ACM technical symposium on
Computer science education, 505-509, 2010.

[10] Hundhausen, C. D., Narayanan, N. H., Crosby, M. E., Exploring studio-based
instructional models for computing education, Proc. 39 SIGCSE Technicalth

Symposium on Computer Science Education, 392-396, 2008.

[11] Myneni, L., Ross, M., Hendrix, D., Narayanan, H., A Review of Studio-Based
Learning in Computer Science, Proceedings of the 46 Annual Southeastth

Regional Conference on XX, 253-255, 2008.

111

	A REVIEW OF STUDIO-BASED LEARNING IN COMPUTER SCIENCE
	Adam S. Carter and Christopher D. Hundhausen
	Washington State University

