
 (define 2nd-max
 (lambda (lon)
 (second (sort lon >))))

Short, sweet, and O(n log n)

.

 1 Find the largest value in the list.
 2 Remove that item from the list.
 3 Find the largest value in what's left.

.

 1 Find the largest value in the list.
 2 Remove that item from the list.
 3 Find the largest value in what's left.

 (define 2nd-max
 (lambda (lon)
 (apply max ; step 3
 (remove ; step 2
 (apply max lon) ; step 1
 lon))))

A little longer, and only O(n).
But it makes three passes...
.

Our argument contains at least two numbers:

 (<number> <number> . <list-of-numbers>)

With the usual definition for a list:

 <list-of-numbers>
 ::= ()
 | (<number> . <list-of-numbers>)

So we will want an interface procedure.
.

If we could write a loop, we might...

 - Create two local variables,
 largest and 2nd-largest.

 - Initialize the variables
 using the first two items in the list.

 - Then look at each item in the rest
 of the list to see if it is greater
 than either of the two variables
 and, if so, update the variables.

.

(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest 6
2nd-largest 1
rest (2 -3 9 4 -1 2 8 1 2 4)

.

(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest 6 <- replace w/ (max 6 2)
2nd-largest 1
rest (2 -3 9 4 -1 2 8 1 2 4)

.

(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest 6
2nd-largest 1 <- replace w/ (max 1 2)
rest (2 -3 9 4 -1 2 8 1 2 4)

.

(6 1 2 -3 9 4 -1 2 8 1 2 4)

largest 6
2nd-largest 2
rest (-3 9 4 -1 2 8 1 2 4)

.

IN PYTHON

def second_max(lst):
 largest = max(lst[0], lst[1])
 second = min(lst[0], lst[1])

 for n in lst[2:]:
 larger = max(largest, n)
 smaller = min(largest, n)

 largest = larger
 second = max(second, smaller)

 return second

.

 (define 2nd-max
 (lambda (lon)
 (2nd-max-tr
 (max (first lon) (second lon))
 (min (first lon) (second lon))
 (rest (rest lon)))))

This is order O(n) and makes only one pass!
But, man, 2nd-max-tr is ugly...

.

Use our interface procedure as inspiration:

(define 2nd-max-tr
 (lambda (largest 2nd-largest lon)
 (if (null? lon)
 2nd-largest
 (2nd-max-tr
 ; -- handle (first lon)
 new value of largest
 new value of second
 ; handle (rest lon)
 new value of lon))))

.

(define 2nd-max-tr
 (lambda (largest 2nd-largest lon)
 (if (null? lon)
 2nd-largest
 (2nd-max-tr
 (max largest (first lon))
 (max 2nd-largest
 (min largest (first lon)))
 (rest lon)))))

This is order O(n), makes only one pass,
and uses only one stack frame.
This is dandy solution, IMHO.
.

How might we compare these solutions?

• length of the code
• space used at run-time
• time used at run-time
• time to create the program
• ...
• complexity of the code
• ...
• familiarity

.

learned a new language in order to ...

... learn a new way to think about languages

... learn a new style of programming

... learn patterns of recursive programs

now: use all three to ...

... learn how programming languages work

.

Static Properties of Variables

A property is static when its value can be
determined by looking at the text of a
program.

A property is dynamic when the program must
be executed in order to determine its value.

Compilers can use static properties of a
program to detect errors and to improve
program performance.

.

A little language

 <exp> ::= <varref>
 | (lambda (<var>) <exp>)
 | (<exp> <exp>)

.

free and bound variables

 int sumOfSquares(int m, int n)
 {
 // m and n are bound
 // to formal parameters
 return m*m + n*n;
 }

.

A variable is bound or occurs bound in an
expression if it refers to the formal
parameter in the expression.

A variable is free or occurs free in an
expression if it is not bound.

.

 <exp> ::= <varref>
 | (lambda (<var>) <exp>)
 | (<exp> <exp>)

Free and bound variables in this language:

.

This is not a combinator:

(define sum-of-applications
 (lambda (f x y)
 (+ (f x) (f y))))

.

Quiz 1

60 points total

=> 54 A
=> 48 B
=> 42 C
=> 36 D

quiz average = 45
"What is my course grade?"
.

 pair list
 ----- -----

type predicate pair? list?

access procedures car first
 cdr rest

constructor cons list

.

