(define 2nd-max

(Llambda (lon)
(second (sort lon >))))

Short, sweet, and O0(n log n)

1 Find the largest value 1n the list.
2 Remove that item from the list.
3 Find the largest value in what's left.

1 Find the largest value 1n the list.
2 Remove that item from the list.
3 Find the largest value in what's left.

(define 2nd-max
(lambda (lon)

(apply max ; step 3
(remove ; step 2
(apply max lon) ; step 1

lon))))

A little longer, and only 0(n).
But 1t makes three passes...

Our argument contains at least two numbers:

(<number> <number> . <list-of-numbers>)

With the usual definition for a list:

<list-of-numbers>
2= ()

| (<number> . <list-of-numbers>)

So we will want an interface procedure.

If we could write a loop, we might...

- Create two local variables,
largest and 2nd-largest.

- Initialize the variables
using the first two items in the Llist.

- Then look at each 1item in the rest
of the list to see if it is greater
than either of the two variables
and, 1f so, update the variables.

(612-394-1228124)

largest 6
2nd-largest 1
rest (2 -394 -128124)

(612 -394-1228124)

largest 6 <- replace w/ (max 6 2)
2nd-largest 1
rest (2 -394 -128124)

(612 -394-1228124)

largest 6
2nd-largest 1 <- replace w/ (max 1 2)
rest (2 -394 -128124)

(612 -394-1228124)

largest
2nd-largest
rest

~ N O

-394 -12812 4)

IN PYTHON

def second_max(lst):
largest = max(lst[0], 1st[1])
second min(1st[@], 1st[11])

for n in 1st[2:]:

larger = max(largest, n)
smaller = min(largest, n)
largest = larger

second = max(second, smaller)

return second

(define 2nd-max
(lambda (lon)
(2nd-max-tr
(max (first lon) (second 1lon))
(min (first lon) (second 1lon))
(rest (rest lon)))))

This 1s order 0(n) and makes only one pass!
But, man, 2nd-max-tr is ugly...

Use our interface procedure as inspiration:

(define 2nd-max-tr
(lambda (largest 2nd-largest lon)
(if (null? lon)
2nd-largest
(2nd-max-tr
; —— handle (first lon)
new value of largest
new value of second
; handle (rest lon)
new value of lon))))

(define 2nd-max-tr
(lambda (largest 2nd-largest lon)
(if (null? 1lon)
2nd-largest
(2nd-max-tr
(max largest (first lon))
(max 2nd-largest
(min largest (first lon)))
(rest lon)))))

This 1s order 0(n), makes only one pass,
and uses only one stack frame.
This 1s dandy solution, IMHO.

How might we compare these solutions?

e length of the code

e space used at run-time

e time used at run-time

e time to create the program

e complexity of the code

e familiarity

learned a new language in order to
learn a new way to think about languages
learn a new style of programming
learn patterns of recursive programs
now: use all three to

learn how programming languages work

Static Properties of Variables

A property 1is static when 1its value can be
determined by looking at the text of a
program.

A property is dynamic when the program must
be executed in order to determine its value.

Compilers can use static properties of a
program to detect errors and to improve
program performance.

A little language

= <varref>
| (lambda (<var>) <exp>)
| (<exp> <exp>)

<exp>

free and bound variables

int sumOfSquares(int m, int n)
{
// m and n are bound
// to formal parameters
return m*m + n*n;

A variable 1is bound or occurs bound in an
expression if 1t refers to the formal
parameter 1n the expression.

A variable 1s free or occurs free in an
expression if 1t 1s not bound.

= <varref>
| (lambda (<var>) <exp>)
| (<exp> <exp>)

<exp>

Free and bound variables in this language:

This 1s not a combinator:

(define sum-of-applications
(Llambda (f x vy)

(+ (f x) (f y))))

Quiz 1

60 points total

=> 54 A
=> 48 B
=> 42 C
=> 36 D

quiz average = 45
"What 1s my course grade?"

type predicate

aCCess procedures

constructor

car
cdr

cons

first
rest

list

