TITLE: Unknown Knowns and Explanation-Based Learning AUTHOR: Eugene Wallingford DATE: August 30, 2019 4:26 PM DESC: ----- BODY: Like me, you probably see references to this classic quote from Donald Rumsfeld all the time:
There are known knowns; there are things we know we know. We also know there are known unknowns; that is to say, we know there are some things we do not know. But there are also unknown unknowns -- the ones we don't know we don't know.
I recently ran across it again in an old Epsilon Theory post that uses it to frame the difference between decision making under risk (the known unknowns) and decision-making under uncertainty (the unknown unknowns). It's a good read. Seeing the passage again for the umpteenth time, it occurred to me that no one ever seems to talk about the fourth quadrant in that grid: the unknown knowns. A quick web search turns up a few articles such as this one, which consider unknown knowns from the perspective of others in a community: maybe there are other people who know something that you do not. But my curiosity was focused on the first-person perspective that Rumsfeld was implying. As a knower, what does it mean for something to be an unknown known? My first thought was that this combination might not be all that useful in the real world, such as the investing context that Ben Hunt writes about in Epsilon Theory. Perhaps it doesn't make any sense to think about things you don't know that you know. As a student of AI, though, I suddenly made an odd connection ... to explanation-based learning. As I described in a blog post twelve years ago:
Back when I taught Artificial Intelligence every year, I used to relate a story from Russell and Norvig when talking about the role knowledge plays in how an agent can learn. Here is the quote that was my inspiration, from Pages 687-688 of their 2nd edition:
Sometimes one leaps to general conclusions after only one observation. Gary Larson once drew a cartoon in which a bespectacled caveman, Zog, is roasting his lizard on the end of a pointed stick. He is watched by an amazed crowd of his less intellectual contemporaries, who have been using their bare hands to hold their victuals over the fire. This enlightening experience is enough to convince the watchers of a general principle of painless cooking.
I continued to use this story long after I had moved on from this textbook, because it is a wonderful example of explanation-based learning.
In a mathematical sense, explanation-based learning isn't learning at all. The new fact that the program learns follows directly from other facts and inference rules already in its database. In EBL, the program constructs a proof of a new fact and adds the fact to its database, so that it is ready-at-hand the next time it needs it. The program has compiled a new fact, but in principle it doesn't know anything more than it did before, because it could always have deduced that fact from things it already knows. As I read the Epsilon Theory article, it struck me that EBL helps a learner to surface unknown knowns by using specific experiences as triggers to combine knowledge it already into a piece of knowledge that is usable immediately without having to repeat the (perhaps costly) chain of inference ever again. Deducing deep truths every time you need them can indeed be quite costly, as anyone who has ever looked at the complexity of search in logical inference systems can tell you. When I begin to think about unknown knowns in this way, perhaps it does make sense in some real-world scenarios to think about things you don't know you know. If I can figure it all out, maybe I can finally make my fortune in the stock market. -----